Math, asked by radhey45, 11 months ago

the length of a metalic pipe is 70 cm, inner diameter is 10 cm and thickness is 5 mm. if desity of metal used is 8 g/cm^3, find mass of the pipe.​

Answers

Answered by qwtiger
2

Answer:

9240 grams.

Step-by-step explanation:

In order to find the mass, we must find volume and then substitute it's value in the equation

Density = mass / Volume.

First, let''s find the Outer diameter of cylinder = 10 + 2(0.5) = 11 cm

Volume of pipe = Outer - inner volume.

                          = π.R².h - π.r².h(Where R is outer radius, r is inner radius and h is the height)

                           = π.h(R² - r²)

                            = 22/7 * 70 *(5.5² - 5²)

                           = 220 *(30.25 - 25)

                           = 220 * 5.25 = 1155 cm³

Now put it in the previous equation : Density = mass/ volume

=> Mass = Volume * Density

              = 1155 * 8 = 9240 gm

Answered by shashankvky
3

Answer:

9240 g or 9.24 kg

Step-by-step explanation:

Given data:

Length of pipe (L)= 70 cm

Inner diameter (d) = 10 cm

inner radius (r) = 5 cm

thickness (t) = 5 mm = 0.5 cm

Density (ρ) = 8 g/cm³

We can calculate outer radius as R = inner radius + thickness

                                                           =  5 cm  + 0.5 cm

                                                           = 5.5 cm

By the definition of density, it is mass per unit volume. Mathematically:

                                      ρ = mass/volume

Volume of cylindrical pipe = Area of rim x length (Please refer the attachment to understand area or rim)

Area of rim =Area of outer circle - Area of inner circle =  π (R² - r²)

Hence, Volume = π (R² - r²) x L

                           = (22/7) (5.5² - 5²) x 70 cm³

                           = 1155 cm³

Substituting this value in the formula of density

                          ρ = mass of pipe / volume

                       8 g/cm³ = mass of pipe / 1155 cm³

                       mass of pipe = 8 g/cm³ x 1155 cm³

                                              =  9240 g

Attachments:
Similar questions