Math, asked by sneheet57, 10 months ago

the length of a rectangle is 2cm more than twice it's widht the perimeter of a the rectangle is 28 cm find the widthof the rectangle.
please solve ​

Answers

Answered by Anonymous
26

Answer:

 \boxed{\sf Width \ of \ the \ rectangle = 4 \ cm}

Given:

Length of the rectangle = 2 cm more than twice it's width

Perimeter of the rectangle = 28 cm

To find:

Width of the rectangle

Step-by-step explanation:

Let the width of the rectangle be 'w'

So,

Length of the rectangle = (2 + 2w) cm

\sf \implies Perimeter \ of \ rectangle = 2(Length + Width)  \\  \\   \sf  \implies 28= 2((2 + 2w) + w)\\  \\   \sf  \implies 28 = 2(2 + 2w + w)\\  \\   \sf  \implies 28 = 2(2 + 3w)\\  \\   \sf  \implies 28 = (2 \times 2) + (2 \times 3w)\\  \\   \sf  \implies 28 = 4 + 6w \\  \\   \sf  \implies 6w + 4 = 28\\  \\   \sf  \implies 6w = 28 - 4\\  \\   \sf  \implies 6w = 24\\  \\   \sf  \implies w =  \frac{24}{6} \\  \\   \sf  \implies w =  \frac{4 \times  \cancel{6}}{ \cancel{6}} \\  \\   \sf  \implies w = 4 \: cm

Width of the rectangle = 4 cm

Answered by Anonymous
2

Solution : -

\implies\tt\bold{Length\:of\:rectangle=2cm}

\implies\tt\bold{Let\:Width\:of\:rectangle=x}

\implies\tt\bold{So,Length\:of\:rectangle\:will\:be=(2+2x)cm}

⚽Formula Used :

\implies\tt\bold{\large{\bold{\bold{\bold{\purple{\sf{Perimeter\:of\:rectangle=2(l+w)}}}}}}}

⚽Now , Calculating :

\implies\tt\bold{28=2(2+2x+x)}

\implies\tt\bold{28=2(2+2x+x)}

\implies\tt\bold{28=2(2+3x)}

\implies\tt\bold{28=(2\times{2})+(2\times{3x)}}

\implies\tt\bold{28=4+6x}

\implies\tt\bold{6x=28-4}

\implies\tt\bold{6x=24}

\implies\tt\bold{x=\cancel\dfrac{24}{6}}

\implies\tt\bold{\large{\bold{\bold{\bold{\green{\sf{x=4}}}}}}}

⚽Hence , Width of Rectangle is 4 ..

Similar questions