Math, asked by adityabisht1435, 4 months ago

The length of a rectangle is (4x +5) and the breadth is(3x + 16). If the perimeter of the rectangle is 532m, find x and the length and breadth of the rectangle.​

Answers

Answered by BrainlyShadow01
34

To Find:-

  • Find three value of " x ".

Given:-

  • The length of a rectangle is (4x +5) and the breadth is(3x + 16).
  • If the perimeter of the rectangle is 532m.

Solution:-

Perimeter of rectangle = 2( l + b )

\tt\implies \: 532 = 2( 4x + 5 + 3x + 16 )

\tt\implies \: 532 = 2( 7x + 21 )

\tt\implies \: 532 = 14x + 42

\tt\implies \: 14x = 532 - 42

\tt\implies \: 14x = 490

\tt\implies \: x = \cancel\dfrac {490} { 14 }

\tt\implies \: x = 35

Hence,

Length =

\tt\implies \: 4x + 5

\tt\implies \: 4( 35 ) + 5

\tt\implies \: 140 + 5

\tt\implies \: 145

Breadth =

\tt\implies \: 3x + 16

\tt\implies \: 3(35) + 16

\tt\implies \: 105 + 16

\tt\implies \: 121

Hence,

  • Length = 145m
  • Breadth = 121m
Answered by Anonymous
27

 \huge \sf \underline \red{Answer : }

 \sf \underline \purple{ x = 35}

\sf \underline \purple{  \: length \: of \:  the \: rectangle = 145}

\sf \underline \purple{  \: breadth \: of  \: the\: rectangle = 121}

 \huge \sf \underline \blue{To  \: find : }

  • x

  • length of the rectangle

  • breadth of the rectangle

 \huge \sf \underline \orange{Solution : }

\sf {Given}\begin{cases}&\sf{Length   \: of \: rectangle = \sf{(4x + 5)}} \\ \\ &\sf{breadth \: of \: rectangle = \sf{(3x+16)}} \\ \\ &\sf{perimeter \: of \: rectangle \: = \sf{532m}}\end{cases}

 \star \:  \:  \:  \:  \sf \underline{We \: know \: that : }

  \: \sf{ \boxed{ \underline{ \underline{ \red{ \sf{perimeter \: of \: rectangle = 2(l + b) \: }}}}}}

  • Length = (4x+5)

  • breadth = (3x+16)

  • perimeter = 532

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf⇢{532 = 2(4x + 5 + 3x + 16)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf⇢{532 = 2(7x + 21)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf⇢{532 = 14x+ 42}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf⇢{14x = 532 - 42}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf⇢{14x = 490}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf⇢{x =  \dfrac{490}{14}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf⇢  x = \normalsize\ \: {\sf{\cancel{\dfrac{490}{14}}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf⇢{x = 35}

  \: \sf{ \boxed{ \underline{ \underline{ \red{ \sf{x= 35 \: }}}}}}

 \sf \underline{So}

 \:  \:  \:  \sf{x = 35}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{length = (4x + 5)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 4(35)+ 5}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{=140 + 5 = 145}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{length = 145}

_____________________________________

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{breadth= (3x + 16)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 3(35) + 16}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 105 + 16 = 121}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{breadth = 121}

 \sf \underline \purple{ \therefore \: x = 35}

 \sf \underline \purple{ \therefore \: length \: of \: rectangle = 145}

 \sf \underline \purple{ \therefore \: breadth \: of \: rectangle = 121}


PopularAnswerer01: Nice
Similar questions