Math, asked by gna0809, 2 months ago

The length of a rectangle is (4x+7)cm and the width is (5x-4)cm.
The area of the rectangle is 209cm^2
Find the perimeter of this rectangle

Answers

Answered by AestheticSoul
6

Given :

Length of the rectangle = (4x + 7) cm

Breadth of the rectangle = (5x - 4) cm

Area of the rectangle = 209 cm²

To find :

Perimeter of the rectangle

Concept :

Here, firstly we will find the value of x and substitute it in the dimensions of the rectangle to find the perimeter. To find the value of x we will use the formula of area of rectangle.

Formula of area of rectangle :-

  • Area of rectangle = l × b

Formula of perimeter of rectangle :-

  • Perimeter of rectangle = 2(l + b)

where,

l denotes the length of the rectangle

b denotes the breadth of the rectangle

Solution :

⟶ Area of rectangle = l × b

⟶ Substituting the given values :-

⟶ 209 = (4x + 7)(5x - 4)

⟶ 209 = 4x(5x - 4) + 7(5x - 4)

⟶ 209 = 20x² - 16x + 35x - 28

⟶ 209 = 20x² + 19x - 28

⟶ 20x² + 19x - 28 - 209 = 0

⟶ 20x² + 19x - 237 = 0

⟶ A quadratic equation is formed and it cannot be solved further. So, here we will use the quadratic formula.

Quadratic formula :-

\boxed{\bold{x =  \dfrac{ -b  \: \pm \:  \sqrt{ {b}^{2}  - 4ac}  }{2a} } }

we have,

  • a = 20
  • b = 19
  • c = - 237

Substituting the given values,

\\ \longrightarrow \quad \sf{x =  \dfrac{ -b  \: \pm \:  \sqrt{ {b}^{2}  - 4ac}  }{2a} }

\\ \longrightarrow \quad \sf{x =  \dfrac{ -19  \: \pm \:  \sqrt{ {19}^{2}  - 4(20)( - 237)}  }{2(20)} }

\\ \longrightarrow \quad \sf{x =  \dfrac{ -19  \: \pm \:  \sqrt{ 361   + 18960}  }{40} }

\\ \longrightarrow \quad \sf{x =  \dfrac{ -19  \: \pm \:  \sqrt{19321}  }{40} }

\\ \longrightarrow \quad \sf{x =  \dfrac{ -19  \: \pm \:  139 }{40} }

\\ \longrightarrow \quad \sf{x =  \dfrac{ -19  \:  +  \:  139 }{40} } \quad  or \quad \sf{x =  \dfrac{ -19  \:  -  \:  139 }{40} }

\\ \longrightarrow \quad \sf{x =  \dfrac{ 120 }{40} } \quad  or \quad \sf{x =  \dfrac{ -158 }{40} }

\\ \longrightarrow \quad \sf{x = 3  \quad  or \quad \sf{x =   -3.95 }}

The dimensions of the rectangle cannot be negative. So, the negative sign will get rejected.

Therefore, the value of x = 3

Substituting the value of x :-

LENGTH :

⟶ Length of the rectangle = (4x + 7)

⟶ Length of the rectangle = (4(3) + 7)

⟶ Length of the rectangle = 12 + 7

Length of the rectangle = 19 cm

BREADTH :

⟶ Breadth of the rectangle = (5x - 4)

⟶ Breadth of the rectangle = (5(3) - 4)

⟶ Breadth of the rectangle = 15 - 4

Breadth of the rectangle = 11 cm

Perimeter of the rectangle :-

⟶ Perimeter of rectangle = 2(l + b)

⟶ Perimeter of rectangle = 2(19 + 11)

⟶ Perimeter of rectangle = 2(30)

⟶ Perimeter of rectangle = 60

Therefore,

  • The perimeter of rectangle = 60 cm
Similar questions