Math, asked by Anonymous, 4 months ago

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answers

Answered by Anonymous
1

Answer:

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}

\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}

\large{ \tt: \implies \: \: \: \: \: 2x = 56}

\large{ \tt: \implies \: \: \: \: \: x = 28}

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}

\large{ \tt: \implies \: \: \: \: \: area = 28\times 36}

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }

The area of Given rectangle is 1008 m².

Answered by Braɪnlyємρєяσя
2

Step-by-step explanation:

Let the breadth of the rectangle be x m. Then,

length of the rectangle =(2x−8) m

Given, perimeter =56 m

⟹2(2x−8+x)=56

⟹2(3x−8)=56

⟹6x−16=56

⟹6x=56+16[Transposing−16toRHS]

⟹6x=72

⟹x=12

Therefore, breadth of the rectangle =12 m and length of the rectangle =2×12−8=16 m

Similar questions