Math, asked by shivaayu685, 11 months ago

The length of a rectangle is less than twice its breadth by 1cm. the length of its diagonal is 17cm . find its length and breadth

Answers

Answered by Anonymous
36

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Length of rectangle is 1 less than twice its breadth.

  • Diagonal is 17 cm

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Length of rectangle
  • Breadth of rectangle

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the length be 'x'

Let the breadth be 'y'

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

\purple\longrightarrow  \sf x + 1 = 2y

 \:\:

\red\longrightarrow  \sf x = 2y - 1 ----------(1)

 \:\:

We know that diagonal of rectangle divides it into 2 right angled triangles.

 \:\:

Hence,

 \:\:

 \underline{\bold{\texttt{By pythagoras theorem,}}}

 \:\:

 \sf \longmapsto 17^2 = x^2 + y^2 -----------(2)

 \:\:

 \footnotesize{ \underline{\bold{\texttt{Putting x = 2y - 1 in equation (2)}}}}

 \:\:

 \sf \longmapsto 17^2 = (2y -1)^2 + y^2

 \:\:

 \sf \longmapsto 289 = 4y^2 + 1 - 4y - y^2

 \:\:

 \sf \longmapsto  289 = 5y^2 - 4y + 1

 \:\:

 \sf \longmapsto 5y^2 - 4y - 288 = 0

 \:\:

 \sf \longmapsto 5y^2 - 40y + 36y - 288 = 0

 \:\:

 \sf \longmapsto 5y(y - 8) +36(y - 8) = 0

 \:\:

 \sf \longmapsto (5y + 36)(y - 8) = 0

 \:\:

\footnotesize{ \underline{\bold{\texttt{We got the values of 'y' as}}}}

 \:\:

  •  \rm y = 8

  •  \rm y = \dfrac { -36} { 5 }

 \:\:

Since length can't be negative hence y = 8cm

 \:\:

\footnotesize{ \underline{\bold{\texttt{Putting y = 8 in equation (1)}}}}

 \:\:

 \sf \longmapsto x = 2(8) - 1

 \:\:

 \sf \longmapsto x = 15 cm

 \:\:

Hence,

 \:\:

Length = 15 cm

Breadth = 8 cm

\rule{200}5

Answered by nidhirandhawa7
6

Answer:

l=15

b=8

Step-by-step explanation:

pls make it brainlest answer

Similar questions