Math, asked by Lesliemaddison7582, 4 months ago

The length of a rectangle is twice is breadth and is perimeter 180 find the diamensions

Answers

Answered by Anonymous
20

Given :-  

  • The length of a rectangle is twice is breadth  
  • Perimeter of rectangle is 180  

To Find :-  

  • Dimensions of the rectangle  

Solution :-  

~Here , in this question we’re given that the length is twice the breadth and value of the perimeter and we need to find the length and breadth of the rectangle . We can find them by putting the values in the formula of finding perimeter of a rectangle .  

_____________

Let the breadth be ‘ x ‘  

Then length will be ‘ 2x ‘  

_____________

⊕ As we know that ,  

Perimeter = 2 ( l + b )  

Where ,  

  • L is the length  
  • B is the breadth  

_____________

Let’s solve by putting the values !

\sf \implies 180 = 2 ( x + 2x )

\sf \implies 180 = 2 ( 3x )

\sf \implies 3x = \dfrac{180}{2}  

\sf \implies 3x = 90

\sf \implies x = \dfrac{90}{3}

\sf \implies x = 30

Therefore ,  

Breadth = x = 30  

Length = 2x = 60  

_____________

Verification :-  

2( l + b ) = 180  

2( 60 + 30 ) = 180  

2( 90 ) = 180  

180 = 180  

LHS = RHS  

Hence , the answer is correct

Answered by ItzBrainlyBeast
65

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{ Given :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Length of the rectangle is twice the breadth}

\qquad\tt{:}\longrightarrow\large\textsf{Perimeter of the rectangle = 180 units }

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{To \; \; Find :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Dimensions of the rectangle = ?}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{Formula :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{${\large\textsf\textcolor{purple}{Perimeter}}_{\large\textsf\textcolor{purple}{( \; Rectangle \; )}}  \large\textsf\textcolor{purple}{= 2 ( l + b )}$}}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{Solution :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Let the breadth of rectangle be ' x ' .}

\qquad\tt{:}\longrightarrow\large\textsf{So , the length would be ' 2x ' .}

\qquad\tt{:}\longrightarrow\large\textsf{Perimeter of the rectangle = 180 units}

\large\textsf{                                                               }

↦ As per the given conditions :-

\qquad\tt{:}\longrightarrow\large\textsf{2 ( 2x + x ) = 180}

\qquad\tt{:}\longrightarrow\large\textsf{4x + 2x = 180 }

\qquad\tt{:}\longrightarrow\large\textsf{6x = 180}

\qquad\tt{:}\longrightarrow\large\textsf{ x =$\cancel{\cfrac{\large\textsf{180}}{\large\textsf{6}}}$}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{x = 30}}

\large\textsf{                                                               }

∴ Breadth = 30 units

∴ Length = 2 × 30 = 60 units

\large\textsf{                                                               }

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{More \; \; Formulas :-}}}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf\textcolor{green}{( \; Cuboid \; )}} = \large\textsf{2h ( l + b )}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2 ( lb + bh + hl )}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{l×b×h}$}

__________________________________________________________

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf\textcolor{green}{( \; Cube \; )}} = \large\textsf{4×l²}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{6 × l²}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{l²}$}

__________________________________________________________

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf\textcolor{green}{( \; Cylinder \; )}} = \large\textsf{2 × πrh}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{2πr × ( r + h )}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{πr²h}$}

__________________________________________________________

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf\textcolor{green}{( \; Cone \; )}} = \large\textsf{πrl}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\textsf{πr × ( r + l )}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cone \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{3}}$}\large\textsf{× πr²h}

__________________________________________________________

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf\textcolor{green}{( \; Sphere \; )}} = \large\textsf{4πr²}$}

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Sphere \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{4}}{\large\textsf{3}}$}\large\textsf{× πr³}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions