Math, asked by khushigarg7008, 16 days ago

the length of a rectangular carton is twice the breadth and thrice the height .if the volume of the carton is 4500cm cube ,find its length ,breadth ,and height .

Answers

Answered by Saby123
15

Solution :

The length of a rectangular carton is twice the breadth and thrice the height.

If the volume of the carton is 4500 cm³, we have to find it's length, breadth and height.

Let us assume that the length of the rectangular carton is x centimetres.

So, the breadth of the carton is x/2 .

And if it's thrice the height of the carton, the height of the carton is x/3 .

Now, the volume of the carton is 4500 cm³

Volume = Length × Breadth × Height

= x . (x/2) . (x/3).

So

x³/6 = 4500

x³ = 4500 × 6

x³ = 27000 = (30)³

Thus, the value of x is 30

The length of the carton is 30 cm

The breadth of the carton is 30/2 = 15 cm

The height of the carton is 30/3 = 10 cm

Answer : The length, breadth and height of the carto. are 30 cm, 15 cm and 10 cm respectively.


Saby123: *carton
Answered by StarFighter
12

Answer:

Given :-

  • The length of a rectangular carton is twice the breadth and thrice the height.
  • The volume of the carton is 4500 cm³.

To Find :-

  • What is the length, breadth and height of a rectangular carton.

Formula Used :-

\clubsuit Volume Of Rectangle Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Volume_{(Rectangle)} =\: Length \times Breadth \times Height}}}\: \: \: \bigstar\\

Solution :-

Let,

\mapsto \bf Length_{(Rectangular\: Carton)} =\: x\: cm\\

\mapsto \bf Breadth_{(Rectangular\: Carton)} =\: \dfrac{x}{2}\: cm\\

\mapsto \bf Height_{(Rectangular\: Carton)} =\: \dfrac{x}{3}\: cm\\

According to the question :

\bigstar The volume of the carton is 4500 cm³.

So,

\footnotesize \implies \bf Volume_{(Rectangle)} =\: Length \times Breadth \times Height\\

\implies \sf 4500 =\: x \times \dfrac{x}{2} \times \dfrac{x}{3}\\

\implies \sf 4500 =\: \dfrac{x \times x \times x}{2 \times 3}\\

\implies \sf 4500 =\: \dfrac{x^3}{6}\\

By doing cross multiplication we get,

\implies \sf x^3 =\: 4500(6)\\

\implies \sf x^3 =\: 4500 \times 6\\

\implies \sf x^3 =\: 27000\\

\implies \sf x =\: \sqrt[3]{27000}\\

\implies \sf\bold{\purple{x =\: 30}}

Hence, the required length, breadth and height of a rectangular carton is :

\dag Length Of Rectangular Carton :

\dashrightarrow \sf Length_{(Rectangular\:  Carton)} =\: x\: cm\\

\dashrightarrow \sf\bold{\red{Length_{(Rectangular\: Carton)} =\: 30\: cm}}\\

\dag Breadth Of Rectangular Carton :

\dashrightarrow \sf Breadth_{(Rectangular\:  Carton)} =\: \dfrac{x}{2}\: cm\\

\dashrightarrow \sf Breadth_{(Rectangular\: Carton)} =\: \dfrac{30}{2}\: cm\\

\dashrightarrow \sf\bold{\red{Breadth_{(Rectangular\: Carton)} =\: 15\: cm}}\\

\dag Height Of Rectangular Carton :

\dashrightarrow \sf Height_{(Rectangular\:  Carton)} =\: \dfrac{x}{3}\: cm\\

\dashrightarrow \sf Height_{(Rectangular\: Carton)} =\: \dfrac{30}{3}\: cm\\

\dashrightarrow \sf\bold{\red{Height_{(Rectangular\: Carton)} =\: 10\: cm}}\\

\therefore The length, breadth and height of a rectangular carton is 30 cm , 15 cm and 10 cm respectively.

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions