Math, asked by laharipragna2879, 9 months ago

The length of a string between a kite and a point on the ground is 90 m. If the string makes an angle θ with the level ground such that tanθ= 15/8 . Find the height of the kite.

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:kite=78.3\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}}   \\  \tt:  { \implies Length\:of\:string=90\:m}\\\\ \tt:\implies Angle\:of\:elevation=\theta\\\\ \tt:\implies tan\:\theta=\frac{15}{8} \\ \\ \red{\underline \bold{To \: Find:}} \\  \tt:  {\implies Height \: of \:kite= ?}

• According to given question :

\tt\circ\:\theta=tan^{-1}(\frac{15}{8})\approx 61.2\degree \\\\ \circ \:  \tt{Let \: Height\: of \: kite \:   be\: h } \\  \\  \bold{As \: we \: know \: that} \\  \tt: {\implies sin \:  \theta=  \frac{Perpendicular}{Hypotenuse}  }\\  \\  \tt:{  \implies 0.87 =  \frac{h}{90}}\\\\ \tt:{\implies 0.87\times 90=h }

 \tt: { \implies  78.3  = h }\\ \\ \green{\tt:  \implies  h =  78.3\:m} \\  \\   \green{\tt {\therefore Height \: of \:kite \:  is \:78.3 \:m}}

 \blue{ \bold{Some \: property \: of \: trigonometery}} \\   \orange{\tt {\circ \: sin  \: \alpha =  \frac{Perpendicular}{Hypotenuse}} } \\  \\   \orange{\tt{ \circ \: cos \: \alpha =  \frac{Base}{Hypotenuse}} } \\  \\    \orange{\tt{ \circ \: cot \: \alpha =  \frac{Base}{Hypotenuse}} } \\  \\   \orange{\tt {\circ \: cosec \:  \alpha  =  \frac{Hypotenuse}{Perpendicular} }} \\  \\ \orange{\tt {\circ \: sec \:  \alpha  =  \frac{Hypotenuse}{Base} }}

Answered by MarshmellowGirl
51

 \large \underline{ \blue{ \boxed{ \bf \green{Required \: Answer}}}}

Attachments:
Similar questions