Math, asked by honey8549, 11 months ago

the length of chord of the parabola y2=8x having equation 3y-4x+8=0​

Answers

Answered by sanjeevk28012
2

Given :

The equation of parabola is y² = 8 x

The equation of chord is 3 y - 4 x + 8 = 0

To Find :

The length of the chord

Solution :

∵  equation of chord   3 y - 4 x + 8 = 0

Or,       3 y = 4 x - 8

Or,          y = \dfrac{4}{3} x - \dfrac{8}{3}

So, The slope chord = tanα = \dfrac{4}{3}

or,    y² = 8 x

Or.    y² = 4 × 2 x

i.e    a = 2

The point are ( 0 ,  0 ) and  ( 4 a tanα   , 4 a tan²α )

Or,   x_1 , y _1   = 0 , 0

And  x_2 , y_2  =  4 a tanα   , 4 a tan²α  

                            = 8 × \dfrac{4}{3}  , 8 × \dfrac{16}{9}  =  \dfrac{32}{3} ,  \dfrac{128}{3}

Again

The length of chord = L = \sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}  }

                                       = \sqrt{(\dfrac{32}{3} -0)^{2}+(\dfrac{128}{3} -0)^{2}  }

                                      = \sqrt{(10.67)^{2}+(72.67)^{2}  }

The length of chord = L = 73.44  unit

Hence, The length of the chord is 73.44 unit   Answer

Similar questions