Physics, asked by saeeuvpatil, 2 months ago

The length of copper wire is 100 meter. It's radius is 1mm. Resistivity of pure copper is 1.72 X 10^-8 ohm meter. Calculate it's resistance.​

Answers

Answered by rsagnik437
42

Answer :-

Resistance of the wire is 0.55 Ω .

Explanation :-

We have :-

→ Length of the wire = 100 m

→ Radius of the wire = 1 mm = 10³ m

→ Resistivity = 1.72 × 10 Ωm

______________________________

Firstly, let's calculate the area of cross section of the wire.

⇒ A = πr²

⇒ A = 3.14 × 10⁻³ × 10⁻³

⇒ A = 3.14 × 10⁻⁶ m²

Now, we know that :-

R = ρl/A

Substituting values, we get :-

⇒ R = [1.72 × 10⁻⁸ × 100]/[3.14 × 10⁻⁶]

⇒ R = [172 × 10⁻⁸]/[3.14 × 10⁻⁶]

⇒ R = [1.72 × 10⁻⁶]/[3.14 × 10⁻⁶]

⇒ R = 1.72/3.14

R = 0.55 Ω


Anonymous: Grêåt!
rsagnik437: Thank you ^•^
Answered by SavageBlast
60

Given:-

  • The length of copper wire is 100 meter. It's radius is 1mm.

  • Resistivity of pure copper is 1.72 \times 10^{-8} ohm meter.

To Find:-

  • It's resistance.

Formula Used:-

  • {\boxed{\bf{Area\:of\:Cross\: Section=\pi r^2}}}

  • {\boxed{\bf{Resistance=ρ \dfrac{l}{A}}}}

Solution:-

Firstly,

\sf :\implies\:Area\:of\:Cross\: Section=\pi r^2

  • Here, r = 1mm = \bf 10^{-3}

\sf :\implies\:Area\:of\:Cross\: Section=\dfrac{22}{7}\times 10^{-3}\times 10^{-3}

\sf :\implies\:Area\:of\:Cross\: Section=\dfrac{22}{7}\times 10^{-6}

\bf :\implies\:Area\:of\:Cross\: Section=3.14\times 10^{-6}\:m^2

Now,

\sf :\implies\:Resistance=ρ \dfrac{l}{A}

\sf :\implies\:Resistance=1.72 \times 10^{-8}\times \dfrac{100}{3.14\times 10^{-6}}

\sf :\implies\:Resistance= \dfrac{1.72\times10^{-8}}{3.14\times 10^{-8}}

\sf :\implies\:Resistance= \dfrac{1.72}{3.14}

\sf :\implies\:Resistance= \dfrac{172}{314}

\sf :\implies\:Resistance= \dfrac{86}{157}

\bf :\implies\:Resistance= 0.54\:ohm

Hence, The Resistance is 0.54 ohm.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions