Math, asked by prabhsandhu2000, 2 months ago

The length of cuboid is 10cm, breadth is 12cm and height is 15cm. Find the total
surface area of cuboid.

Answers

Answered by akshikajain1502
2

Step-by-step explanation:

see in the pic

just apply the formula and your ans is ready

thnku

Attachments:
Answered by BrainlyRish
1

Given: The length of cuboid is 10cm, breadth is 12cm and height is 15cm respectively .

Need To Find : Total Surface Area of Cuboid.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Formula for Total Surface Area of Cuboid is given by :

\dag\frak{\underline {As,\:We\:know\:that\::}}\\

\star \boxed {\pink{ \small {\sf { Total \:Surface \:Area_{(Cuboid)} = 2( Length \times Breadth + Breadth \times Height + Length \times Height)\:sq.units}}}}\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \quad :\implies \sf{ T.S.A_{(Cuboid)} = 2( 10 \times 12 + 12 \times 15 + 10 \times 15 )}\\

\qquad \quad :\implies \sf{ T.S.A_{(Cuboid)} = 2( 120 + 180 + 150 )}\\

\qquad \quad :\implies \sf{ T.S.A_{(Cuboid)} = 2( 300 \times 150 )}\\

\qquad \quad :\implies \sf{ T.S.A_{(Cuboid)} = 2( 450 )}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm { T.S.A _{(Cuboid)} = 900\: cm^{2}}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence,\; Total \:Surface \:Area\:of\:Cuboid \:is\:\bf{900\: cm^{2}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

⠀⠀⠀⠀⠀\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions