Math, asked by raikazi866, 6 months ago

the length of diagonal of a rectangular land is 15 mts and the difference of length and breadth is 3 m . calculate the perimeter​

Answers

Answered by EliteZeal
8

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

\large\underline{\green{\bf Given :-}}

 \:\:

  • The length of diagonal of a rectangular land is 15 m

 \:\:

  • Difference of length and breadth is 3 m

 \:\:

\large\underline{\red{\bf To \: Find :-}}

 \:\:

  • Perimeter of rectangular land

 \:\:

We know that , in a rectangle

 \:\:

➠ Diagonal² = Length² + Breadth²

 \:\:

  • Let the length be "l"

  • Let the breadth be "b"

  • Let the diagonal be "d"

 \:\:

➠ d² = l² + b² ⚊⚊⚊⚊ ⓵

 \:\:

Given that diagonal is 15 m

 \:\:

➨ d = 15 ⚊⚊⚊⚊ ⓶

 \:\:

Also given that difference of length and breadth is 3 m

 \:\:

➜ l - b = 3

 \:\:

➜ l = 3 + b ⚊⚊⚊⚊ ⓷

 \:\:

Putting equation ⓶ & ⓷ in ⓵

 \:\:

➜ d² = l² + b²

 \:\:

➜ 15² = (3 + b)² + b²

 \:\:

➜ 225 = 3² + b² + 2(3)(b) + b²

 \:\:

➜ 225 = 9 + 2b² + 6b

 \:\:

➜ 2b² + 6b = 225 - 9

 \:\:

➜ 2b² + 6b = 216

 \:\:

Dividing the above equation be 2

 \:\:

➜ b² + 3b = 108

 \:\:

➜ b² + 3b - 108 = 0

 \:\:

➜ b² + 12b - 9b - 108 = 0

 \:\:

➜ b(b + 12) -9(b + 12) = 0

 \:\:

➜ (b + 12)(b - 9) = 0

 \:\:

  • b = -12
  • b = 9 ⚊⚊⚊⚊ ⓸

 \:\:

As breadth can't be negative hence b = 9

 \:\:

  • Hence breadth of rectangle is 9 m

 \:\:

Putting b = 9 from ⓸ to ⓷

 \:\:

➜ l = 3 + b

 \:\:

➜ l = 3 + 9

 \:\:

➨ l = 12 ⚊⚊⚊⚊ ⓹

 \:\:

  • Hence the length of rectangular land is 12 m

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2(l + b) ⚊⚊⚊⚊ ⓺

 \:\:

Where,

 \:\:

  • l = Length

  • b = breadth

 \:\:

 \underline{\bold{\texttt{Perimeter of given rectangular land :}}}

 \:\:

  • l = 12 m

  • b = 9 m

 \:\:

Putting these values in ⓺

 \:\:

➜ 2(l + b)

 \:\:

➜ 2(12 + 9)

 \:\:

➜ 2(21)

 \:\:

➨ 42

 \:\:

  • Hence the perimeter of rectangular land is 42 m

 \:\:

═════════════════════════

Similar questions