Math, asked by divyanshchaudhary87, 10 months ago

The length of latus rectum of the conic 4x2 - 9y2 = 16 is​

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=\frac{8}{9}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: conic = 4{x}^{2}- {9y}^{2}   = 16} \\  \\ \red {\underline \bold{To \: Find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

 \tt {:  \implies  {4x}^{2}  - 9{y}^{2}  = 16} \\  \\ \tt{ : \implies   \frac{ {x}^{2} }{ \frac{16}{4} }   +  \frac{ {y}^{2} }{ \frac{16}{9} }  = 1} \\  \\   \tt{: \implies  \frac{ {x}^{2} }{4}  +  \frac{ {y}^{2} }{\frac{16}{9}}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   - \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  4} \\   \\   \tt{\circ \:  {b}^{2}  = \frac{16}{9}} \\  \\  \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times \frac{16}{9}}{4} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  \frac{8 }{9} }}

Similar questions