Math, asked by yashlakhe017, 11 months ago

The length of latus rectum of the parabola
4y² + 2x - 20y +17 = 0 is :​

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum=0.5\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{:  \implies  4{y}^{2} +2x- 20y + 17=0 \:  \:  \: (Eqn \: of \: parabola} \\  \\ \red {\underline \bold{To \: Find : }}  \\  \tt{:  \implies Length \: of \: latus \: rectum =?}

• According to given question :

 \tt{:  \implies  4{y}^{2}+2x -20y + 17=0}  \\  \\  \tt{: \implies 4{y}^{2}   - 20y+25 = -2x - 17+25} \\  \\\tt{: \implies  (2y-5)^{2} = -2(x - 4)} \\  \\  \tt{:  \implies 4(y - \frac{5}{2})^{2}  = -2(x -4)} \\  \\  \tt{:  \implies {(y - \frac{5}{2})}^{2}  = -4\times\frac{1}{8} (x - 4)} \\   \\  \text{So, \: it \:is \: in \: the \: form \: of}\\  \tt{ :  \implies   Y^{2}  = -4aX} \\  \\  \bold{where : } \\   \tt{\circ \: a =  \frac{1}{8} } \\  \\  \bold{As \: we \: know \: that} \\  \tt{:  \implies Latus \: rectum =  4a }\\  \\ \tt{:  \implies Latus \: rectum =  4 \times  \frac{1}{8}  }\\  \\ \green{\tt{:  \implies Latus \: rectum = 0.5 \: units }}\\  \\

Similar questions