Math, asked by shreyas301398, 1 year ago

the length of rectangle exceeds its width by 8cm and area of rectangle is 240sq.cm.find dimension of rectangle. sove this by quadratic equations plz solve it

Answers

Answered by calidris
1

Area of the rectangle =Length * width

Let x= width of the rectangle

x+8 = Width of the rectangle

Area of the rectangle = 240

Thus x(x+8)=240

x^2+8x =240

Subtracting 240 on both sides,

x^2+8x-240=0

Using Quadratic formula to solve this equation.

 \mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

 x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

 \mathrm{For\:}\quad a=1,\:b=8,\:c=-240:\quad x_{1,\:2}=\frac{-8\pm \sqrt{8^2-4\cdot \:1\left(-240\right)}}{2\cdot \:1}

 x=\frac{-8+\sqrt{8^2+4\cdot \:1\cdot \:240}}{2\cdot \:1}=12

 x=\frac{-8-\sqrt{8^2+4\cdot \:1\cdot \:240}}{2\cdot \:1}=-20 (impossible)

So the width of the rectangle =x = 12 cm

Length of the rectangle = x+8=12+8=20 cm

Similar questions