Math, asked by jagdishsharma96018, 8 months ago

the length of rectangle is twice its breadth and its perimeter are 96 metre the length of the rectangle is ​

Answers

Answered by varshunaidu06
1

Step-by-step explanation:

Let the breadth be x ,

2(l+b) = 96

2(2x+x)=96

2×3x=96

6x=96

x=96/6

x=16

therefore breadth means x= 16

length= 2x=2×16=32

Answered by Yuseong
62

Solution :

Given -

  • Length of rectangle is twice its breadth

  • Perimeter is 96m.

To find -

  • Length of the rectangle

Calculation -

Let the breadth of the rectangle be  \tt { x \: m}

Therefore, length becomes  \tt { 2x \: m}

We know that,

 \boxed { \large \tt \purple { Perimeter \ of \ rect. = 2 \times ( l + b)}}

According to formula substitute the value to find length of the rectangle -

 \large \tt { Perimeter \ of \ rect. = 2 \times ( l +b)}

  \tt { \leadsto 96m =  2 \times ( 2x + x)}

  \tt { \leadsto 96m =  2 \times  3x}

  \tt { \leadsto 3x =  \dfrac{96}{2} }

  \tt { \leadsto 3x =  48 }

  \tt\red { \leadsto x =  \cancel {\dfrac {48}{3}} = 16m }

Therefore,

  •  \tt { Breadth = x = 16m}

  •  \tt\purple { Length = 2x = 2 \times 16 = 32m }

_______________________________

More-

  • Perimeter of rectangle =  \tt { 2 \times (l+b)}

  • Area of rectangle =  \tt { l \times b}

  • Perimeter of square =  \tt { 4 \times sides}

  • Area of square =  \tt { Side \times Side}

  • Perimeter of triangle = sum of all sides

  • Area of triangle =  \tt { \dfrac{1}{2} \times b \times h}

_________________________________

Similar questions