Math, asked by amanthakur4580, 5 months ago

the length of sides of triangle are 9cm 12cm . 15cm find the length of altitude corrosponding to the s​

Answers

Answered by avniverma75
0

Step-by-step explanation:

Given length of the sides of triangle are 9 cm,12 cm and 15 cm

We know that median=

2

2b

2

+2c

2

−a

2

Here a=15 cm b=12 cm and c=9 cm

Then median of longest side=

2

2(12)

2

+2(9)

2

−(15)

2

=

2

288+162−22 ⇒=

2

225 = 2,/15 =7.5 cm

Answered by EliteZeal
58

Correct question

 \:\:

The length of sides of triangle are 9cm 12cm . 15cm find the length of altitude corresponding to the sides

 \:\:

A n s w e r

 \:\:

G i v e n

 \:\:

  • Length of first Side is 9cm

  • Length of second side is 12 cm

  • Length of third side is 15 cm

 \:\:

F i n d

 \:\:

  • Length of altitude corresponding to the sides

 \:\:

S o l u t i o n

 \:\:

\underline{ \underline{\bold{\texttt{Area of triangle :}}}}

 \:\:

 \sf \sqrt { s(s - a)(s - b)(s - c) } ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • a = First side

  • b = Second side

  • c = Third side

  • s = Semi perimeter

  •  \sf s = \dfrac { a + b + c } { 2 }

 \:\:

\underline{ \underline{\bold{\texttt{Area of the given triangle :}}}}

 \:\:

  • a = 9 cm

  • b = 12 cm

  • c = 15 cm

  •  \sf s = \dfrac { 9 + 12 + 15 } { 2 } = 18 cm

 \:\:

Putting the above values in ⓵

 \:\:

: ➜  \sf \sqrt { s(s - a)(s - b)(s - c) }

 \:\:

: ➜  \sf \sqrt { 18(18 - 9)(18 - 12 )(18 - 15) }

 \:\:

: ➜  \sf \sqrt { 18(9)(6)(3) }

 \:\:

: ➜  \sf \sqrt { 18(3)(3)(18) }

 \:\:

: ➜ 18 × 3

 \:\:

: : ➨ 54 cm²

 \:\:

  • Hence the area of triangle is 54 cm²

 \:\:

\underline{ \underline{\bold{\texttt{Area of triangle :}}}}

 \:\:

 \sf A = \dfrac { 1 } { 2 } \times b \times h ⚊⚊⚊⚊ ⓶

 \:\:

Where ,

 \:\:

  • A = Area of triangle

  • b = Base

  • h = Perpendicular height = Altitude corresponding the base

 \:\:

Case I [ With base as 9 cm ]

 \:\:

Let altitude corresponding the 9 cm base be 'H1'

 \:\:

  • A = 54 cm²

  • b = 9 cm

  • h = H1

 \:\:

Putting the above values in ⓶

 \:\:

: ➜  \sf A = \dfrac { 1 } { 2 } \times b \times h

 \:\:

: ➜  \sf 54 = \dfrac { 1 } { 2 } \times 9 \times H1

 \:\:

: ➜  \sf H1 = \dfrac { 54 \times 2 } { 9 }

 \:\:

: : ➨ H1 = 12 cm

 \:\:

  • Hence altitude corresponding to side 9 cm is of length 12 cm

 \:\:

Case II [ With base as 12 cm ]

 \:\:

Let altitude corresponding the 12 cm base be 'H2'

 \:\:

  • A = 54 cm²

  • b = 12 cm

  • h = H2

 \:\:

Putting the above values in ⓶

 \:\:

: ➜  \sf A = \dfrac { 1 } { 2 } \times b \times h

 \:\:

: ➜  \sf 54 = \dfrac { 1 } { 2 } \times 12 \times H2

 \:\:

: ➜  \sf H2 = \dfrac { 54 \times 2 } { 12 }

 \:\:

: : ➨ H2 = 9 cm

 \:\:

  • Hence altitude corresponding to side 12 cm is of length 9 cm

 \:\:

Case III [ With base as 15 cm ]

 \:\:

Let altitude corresponding the 15 cm base be 'H3'

 \:\:

  • A = 54 cm²

  • b = 15 cm

  • h = H3

 \:\:

Putting the above values in ⓶

 \:\:

: ➜  \sf A = \dfrac { 1 } { 2 } \times b \times h

 \:\:

: ➜  \sf 54 = \dfrac { 1 } { 2 } \times 15 \times H3

 \:\:

: ➜  \sf H3 = \dfrac { 54 \times 2 } { 15 }

 \:\:

: : ➨ H3 = 7.2 cm

 \:\:

  • Hence altitude corresponding to side 15 cm is of length 7.2
Similar questions