Math, asked by bodkhesamu, 11 hours ago

The length of the chord of the larger circle which is tangent to the smaller circle of two concentric circles is 'a' units. Then the area enclosed between the concentric circle is​

Attachments:

Answers

Answered by MysticSohamS
3

Answer:

hey here is your solution

pls mark it as brainliest

refer the reference diagram uploaded above

Step-by-step explanation:

To  \: find  =  \\ area \: enclosed \: between \: two \: circles \: (in \: terms \: of \: a) \\  \\ so \: here \:  AB \: is \: a \: chord \: of \: larger \: circle \\ so \: AB = a.units \\ \: \\ so \: here \: let \: the \: common \: centre \: of \: two \: concentric \: circles \: be \: O \\ so \: OM \: is \: a \: perpendicular \: drawn \: from \: centre \: O \: on \: chord \: of \: larger \: circle \: AB \\ so \: we \: know \: that \\ perpendicular \: drawn \: from \: centre \: of \: circle \: on \: its \: chord \: bisects \: the \: chord \\  \\ hence \: then \\ AM=MB =  \frac{1}{2}  \: OM  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)\\  \\ now \: AM+MB = AB \:  \:  \:  \:  \: (A - M - B \: ) \\ AM+AM = AB \:  \:  \:  \:  \:  \:  \:  \:  \:  \: from \: (1) \\  \\ ie \: AB = 2.MB \\ ie \: MB =  \frac{AB}{2}  \\  \\  =  \frac{a}{2}  \: units \:  \:  \:  \:  \:  \:  \: (2)

hence \: then \\ from \: (1) \: and \: (2) \\ we \: get \\ MB =  \frac{OM}{2}  \\  \\  =  \frac{a}{2}  =  \frac{OM}{2}  \\  \\ hence \: as \: well \: OM = a.units \:  \:  \:  \:  \:  \:  \: (3)

now \: conidering \: △ \: OMB \\ as \:  \: ∠ OMB = 90 \\ by \: applying \: pythagoras \: theorem \\ we \: get \\ OM {}^{2}   \: +  \: MB {}^{2}  = OB {}^{2}  \\  = (a) {}^{2}  + ( \frac{a}{2} ) {}^{2}  \\  \\  = a {}^{2} \:   +  \:  \frac{a {}^{2} }{4}  \\  \\  =  \frac{4a {}^{2} + a {}^{2}  }{4}  \\  \\ hence  \: \: OB {}^{2}  =  \frac{5a {}^{2} }{4}

now \: thus \: then \\ OB \: is \: a \: radius \: of \: larger \: circle \: and \\ OM \: is \: that \: of \: smaller \: circle \\  \\ so \: here \: OM {}^{2}  = a {}^{2}  \\ OB {}^{2}  =  \frac{5a {}^{2} }{4}  \\  \\ so \: area \: of \: smaller \: circle = \pi.OM {}^{2}  \\  = \pi.a {}^{2}  \:  \:  \:  \:  \:  \:  \:  \: (4) \\  \\ similarly \: area \: of \: larger \: circle = \pi.OB {}^{2}  \\  \\  =  \frac{\pi.5a {}^{2} }{4}  \:  \:  \:  \:  \:  \:  \:  \: (5)

so \: thus \: then \\ area \: enclosed \: between \: two \: circles =  \\ area \: of \: large \: circle \:  -  \: area \: of \: smaller \: circle \\  \\  =  \frac{\pi.5a {}^{2} }{4}  \:  -  \: \pi.a {}^{2}  \\  \\  = \pi( \frac{5a { }^{2} }{4}  \:  -  \: a {}^{2}  \: ) \\  \\  = \pi( \frac{5a {}^{2} - 4a {}^{2}  }{4}  \: ) \\  \\  = \pi( \frac{a {}^{2} }{4}  \: ) \\  \\  =  \frac{\pi.a {}^{2} }{4}  \: units {}^{2}

Attachments:
Similar questions