Math, asked by zjeevana, 11 months ago

the length of the diagonal of a cube of side
3 \sqrt{3}
meter is​

Answers

Answered by Anonymous
4

❏ Question:-

@ The length of the diagonal of a cube of side 3 \sqrt{3} meter is ?

❏ Solution:-

➝ FIG:-

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(5.6,5.6){$A$}\put(11.1,5.8){$B$}\put(11.08,8.9){$C$}\put(5.46,8.7){$D$}\put(3.55,10.15){$E$}\put(3.55,7.15){$F$}\put(9.14,10.235){$H$}\put(9.14,7.3){$G$}\put(7.75,6.2){$3\sqrt{3}\:cm$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\put(6,6){\line(2,3){2.86}}\end{picture}

➝ Given:-

• Side of the cube = \sf 3 \sqrt{3} m.

➝ Explanation:-

\sf\longrightarrow Diagonal=\sqrt{3}\times 3\sqrt{3}\:m

\sf\longrightarrow \boxed{\large{\red{Diagonal=9\:m}}}

➝ Answer:-

Diagonal of the cube is 9 m.

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

➝ Used Formula:-

✦ For a cuboid of length l , breadth b and height h .

\sf\longrightarrow\boxed{ Diagonal=\sqrt{l^{2}+b^{2}+h^{2}}}

\sf\longrightarrow\boxed{T.S.A.=2\times(lb+bh+hl)}

\sf\longrightarrow\boxed{ Volume=l\times b\times h}

Where, • T.S.A.=Total Surface area,

✦For a Cube of Side a ,

\sf\longrightarrow\boxed{ Diagonal=\sqrt{3}\times side}

\sf\longrightarrow\boxed{T.S.A.=6\times side{}^{2}}

\sf\longrightarrow\boxed{ Volume=Side^{3}}

Where, •T.S.A.=Total Surface area.

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

Similar questions