Math, asked by 35893, 7 months ago

The length of the diagonal of a rectangular plot whose length and breadth are 12 cm and 9 cm respectively is

Answers

Answered by sethrollins13
21

Given :

  • Length of Rectangular plot = 12cm.
  • Breadth of Rectangular plot = 9cm.

To Find :

  • Length of the diagonal of Rectangular Plot.

Solution :

\longmapsto\tt{Length=12cm}

\longmapsto\tt{Breadth=9cm}

Using Formula :

\longmapsto\tt\boxed{Diagonal\:of\:Rectangle=\sqrt{{(l)}^{2}+{(b)}^{2}}}

Putting Values :

\longmapsto\tt{\sqrt{{(12)}^{2}+{(9)}^{2}}}

\longmapsto\tt{\sqrt{144+81}}

\longmapsto\tt{\sqrt{225}}

\longmapsto\tt\bold{15cm}

So , The Length of the diagonal is 15cm..

_______________________

  • Area of Rectangle = length × breadth
  • Perimeter of Rectangle = 2 (l+b)
  • Diagonal of Rectangle = √l² + b²
  • Area of Square = (Side)²
  • Perimeter of Square = 4 × Side

_______________________

Answered by itzNobita26
3

Given :

Length of Rectangular plot = 12cm.

Breadth of Rectangular plot = 9cm.

To Find :

Length of the diagonal of Rectangular Plot.

Solution :

\longmapsto\tt{Length=12cm}⟼Length=12cm

\longmapsto\tt{Breadth=9cm}⟼Breadth=9cm

Using Formula :

\longmapsto\tt\boxed{Diagonal\:of\:Rectangle=\sqrt{{(l)}^{2}+{(b)}^{2}}}⟼

DiagonalofRectangle= (l) 2 +(b) 2

Putting Values :

\longmapsto\tt{\sqrt{{(12)}^{2}+{(9)}^{2}}}⟼

(12)

2

+(9)

2

\longmapsto\tt{\sqrt{144+81}}⟼

144+81

\longmapsto\tt{\sqrt{225}}⟼

225

\longmapsto\tt\bold{15cm}⟼15cm

So , The Length of the diagonal is 15cm..

_______________________

Area of Rectangle = length × breadth

Perimeter of Rectangle = 2 (l+b)

Diagonal of Rectangle = √l² + b²

Area of Square = (Side)²

Perimeter of Square = 4 × Side

_______________________

Similar questions