Math, asked by tbhavy007, 4 months ago

The length of the diagonal of a square is 12 cm. Find its area and perimeter.​

Answers

Answered by aartizalte07
0

Answer:

area of rectangle = side x side

= 12 x 6 .... ( 2 diagonals + 4 sides of square)

= 72

area of square is 72

Answered by suraj5070
123

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt The length of the diagonal of a square is 12 cm.\\\tt Find its area and perimeter.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Diagonal \:of\:a\:square=12\:cm

 \sf \bf {\boxed {\mathbb {TO\:PROVE}}}

  •  \sf \bf (i) Area\:of\:the\:square
  •  \sf \bf(ii)Perimeter\:of\:the\:square

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 \tt {\underbrace{\color {green} {(i) Area\:of\:the\:Square}}}

 {\boxed{\boxed {\color{blue} {\sf \bf A= \dfrac{1}{2} {d}^{2}}}}}

  •  \sf \bf A=area\:of\:Square
  •  \sf \bf d= Diagonal

 \tt \underline {Substitute\:the\:values}

 \sf \bf \implies A= \dfrac{1}{2} \times {(12)}^{2}

 \sf \bf \implies A=\dfrac{1}{2}\times 144

 \implies {\boxed{\boxed {\color {red} {\sf \bf A=72{cm}^{2}}}}}

◆▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬◆

 \tt {\underbrace{\color {green} {(ii) Perimeter\:of\:the\:Square}}}

 \sf \bf \implies a \times a=72

 \sf \bf \implies {a}^{2}=72

 \sf \bf \implies a=\sqrt{72}

 \sf \bf \implies a=\sqrt{36 \times 2}

 \implies {\boxed{\color {purple} {\sf \bf a=6\sqrt{2}}}}

 {\boxed {\boxed {\color{blue} {\sf \bf P=4 a}}}}

  •  \sf \bf P=perimeter\:of\:the\:square
  •  \sf \bf a=side

 \tt \underline {Substitute\:the\:values}

 \sf \bf \implies P=4 \times 6\sqrt{2}

 \implies {\boxed {\boxed {\color {red} {\sf \bf P=24\sqrt{2}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

\sf \bf Area\:of \:Square =\dfrac{1}{9} \times {d}^{2}

\sf \bf Area\:of \:Rectangle =l \times b

\sf \bf Area\:of \:Triangle =\dfrac{1}{2} \times b \times h

\sf \bf Area\:of \:Rhombus =\dfrac{d_1  \times d_2}{2}

\sf \bf Area\:of \:Trapezium =\dfrac{1}{2} \times h(a+b)

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions