The length of the hypotenuse of a right-angled triangle exceeds the length of the base by 2 cm and exceeds twice the length of the altitude by 1 cm. Find the length of each side of the triangle.
Answers
Answer:
Let,Base=x
\mathsf {Altitude = y}Altitude=y
\mathsf {Hypotenuse = h}Hypotenuse=h
\underline \mathsf{ATQ:-}
ATQ:−
\mathsf {h = x + 2}h=x+2
\mathsf {h = 2y + 1}h=2y+1
\implies \mathsf {x + 2 = 2y + 1}⟹x+2=2y+1
\implies \mathsf {x + 2 - 1 = 2y}⟹x+2−1=2y
\implies \mathsf {x - 1 = 2y}⟹x−1=2y
\implies \mathsf {\frac{x - 1}{2} = y}⟹
2
x−1
=y
\mathsf {And\:x^2 + y^2 = h^2}Andx
2
+y
2
=h
2
\implies \mathsf {x^2 + \big(\frac{x-1}{2}\big)^2 = (x + 2)^2}⟹x
2
+(
2
x−1
)
2
=(x+2)
2
\implies \mathsf {x^2 - 15x + x - 15 = 0}⟹x
2
−15x+x−15=0
\implies \mathsf {x^2 - 15x + x - 15 = 0}⟹x
2
−15x+x−15=0
\implies \mathsf {(x - 15) (x + 1) = 0}⟹(x−15)(x+1)=0
\implies \mathsf {x = 15\:Or\:x = -1}⟹x=15Orx=−1
\underline\mathsf \blue {Base\:=\: 15\:Cm}
Base=15Cm
\underline\mathsf \blue {Altitude\:=\: \frac{x + 1}{2}\:=\:8\:Cm}
Altitude=
2
x+1
=8Cm
\underline\mathsf \blue {Hypotenuse \:=\:17\:Cm}
Hypotenuse=17Cm
Step-by-step explanation: