the length of the hypotenuse of a right triangle exceeds the length of the bese by 2 cm and exceeds twice the length of the altitude by 1 cm. find the length o each side of the triangle.
Answers
Answered by
6
b+2=c
b=c-2
.
2a+1=c
2a=c-1
a=(c-1)/2
.
a^2+b^2=c^2
((c-1)/2)^2+(c-2)^2=c^2
(c^2-2c+1)/4 + c^2-4c+4=c^2
c^2-2c+1+4(c^2-4c+4)=4c^2
c^2-2c+1+4c^2-16c+16=4c^2
c^2-18c+17=0
(c-17)(c-1)=0
c=17
b=15
a=8
b=c-2
.
2a+1=c
2a=c-1
a=(c-1)/2
.
a^2+b^2=c^2
((c-1)/2)^2+(c-2)^2=c^2
(c^2-2c+1)/4 + c^2-4c+4=c^2
c^2-2c+1+4(c^2-4c+4)=4c^2
c^2-2c+1+4c^2-16c+16=4c^2
c^2-18c+17=0
(c-17)(c-1)=0
c=17
b=15
a=8
Answered by
7
Let base = x cm
Hypotenuse = (x+2)cm
Given,
Hypotenuse = 2 × altitude + 1 cm
By Pythagoras theorem,
As length cannot be negative, x ≠ -1, so x = 15
Hence,
base = 15cm
Hypotenuse = 15+2 = 17cm
Altitude =
Similar questions