Math, asked by Niranjana2017, 3 months ago

The length of the major axis of the ellipse is (5x-10)²+(5+15)²=\dfrac{(3x-4y+7)²}{4}

Answers

Answered by Anonymous
5

Answer:

(5x−10) 2

+(5y+15) 2

=4

(3x−4y+7) 2

(x−2)

2+(y+3) 2

=( 2 153x−4y−7 ) 2

(x−2)

2 +(y+3) 2

= 21

5 ∣3x−4y−7∣

is an ellipse , whose focus is (2,-3), directrix 3x-4y+7 =0 and eccentricity is 21

Length of perpendicular from focus to directrix i 5

∣3×2−4(−3)+7∣

=5ea−ae=5

2a− 2a=5

a= 310

So length of major axis is

320

hope it help.

mark brainliest

Answered by mathdude500
5

Appropriate Question is

The length of major axis of the ellipse is

\rm :\:{(5x - 10)}^{2}+ {(5y + 15)}^{2}=\dfrac{{(3x - 4y + 7)}^{2} }{4}

Basic Concept Used :-

Definition of ellipse :-

The set of locus of point P which moves in such a way that it distance from the fixed point (S) and perpendicular distance on the fixed line always bear a constant ratio which is always less than 1.

  • The fixed point is called focus.

  • The fixed line is called directrix.

  • The constant ratio is called eccentricity represents by e.

\large\underline{\bf{Solution-}}

Given

\rm :\longmapsto\:{(5x - 10)}^{2}+ {(5y + 15)}^{2}=\dfrac{{(3x - 4y + 7)}^{2} }{4}

\rm :\longmapsto\: 25{(x - 2)}^{2} +  25{(y + 3)}^{2} = \dfrac{ {(3x - 4y + 7)}^{2} }{4}

\rm :\longmapsto\:{(x - 2)}^{2}+ {(y + 3)}^{2}=\dfrac{{(3x - 4y + 7)}^{2} }{4 \times 25}

\rm :\longmapsto\:{(x - 2)}^{2}+ {(y + 3)}^{2}=\dfrac{{(3x - 4y + 7)}^{2} }{ {2}^{2}  \times  {5}^{2} }

 \rm \therefore \:  \sqrt{ {(x - 2)}^{2} +  {(y + 3)}^{2}} = \dfrac{1}{2}  \times \dfrac{ |3x - 4y + 7| }{5}

So, by definition of ellipse,

its provides

  • focus is (2, - 3)

  • Equation of directrix is 3x - 4y + 7 = 0

  • Eccentricity (e) = 1/2.

We know that,

The perpendicular distance (d) drawn from a point (p, q) on the line ax + by + c = 0 is

\bf \:Distance,d = \dfrac{ |ap + bq + c| }{ \sqrt{ {a}^{2} +  {b}^{2}  } }

Now,

Distance (d) of the directrix 3x - 4y + 7 = 0 from point (2, - 3) is given by

\rm :\longmapsto\:\bf \:Distance,d = \dfrac{ |3 \times 2  + 4 \times 3 + 7| }{ \sqrt{ {3}^{2} +  {4}^{2}  } }

\rm :\longmapsto\:\bf \:Distance,d = \dfrac{ |6 + 12 + 7| }{ \sqrt{9 + 16 } }

\rm :\longmapsto\:\bf \:Distance,d = \dfrac{ |25| }{ \sqrt{25} }

\rm :\longmapsto\:\bf \:Distance,d = 5 \: units

Now, we know that,

 \sf \: Distance \: of \: focus \: from \: centre  \:  = ae

and

 \sf \: Distance \: of \: directrix \: from \: centre\:  =  \dfrac{a}{e}

Hence,

\rm :\longmapsto\:\dfrac{a}{e}  - ae = 5

\rm :\longmapsto\:a \bigg(\dfrac{1}{e}  - e \bigg) = 5

\rm :\longmapsto\:a \bigg(2 - \dfrac{1}{2}  \bigg) = 5 \:  \:  \:  \:  \:  \:  \:  \{ \:  \because \: e =  \dfrac{1}{2} \}

\rm :\longmapsto\:a \bigg(\dfrac{4 - 1}{2}  \bigg) = 5

\rm :\longmapsto\:a \bigg(\dfrac{3}{2}  \bigg) = 5

\bf\implies \:a \:  =  \: \dfrac{10}{3}

Now,

We know

 \rm :\longmapsto\:Length \: of \: major \: axis \:  = 2a

 \rm :\longmapsto\:Length \: of \: major \: axis \:  = 2 \times \dfrac{10}{3}

 \rm :\longmapsto\:Length \: of \: major \: axis \:  = \dfrac{20}{3}  \: units

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \purple{\boxed{\bf \: Length \: of \: major \: axis \:  = \dfrac{20}{3} \: units}}}

Additional Information :-

The general equation of ellipse having centre at (0, 0) is

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \: where \: a \:  \ne \:  \: b

\boxed{\bf \: Vertex = ( \pm \: a,0)}

 \boxed{\bf \: eccentricity, \: e =  \sqrt{1 - \dfrac{ {b}^{2} }{ {a}^{2}}}}

\boxed{\bf \: {b}^{2} =  {a}^{2}(1 -  {e}^{2}}

\boxed{\bf \:Focus = ( \pm \: ae, \: 0)}

\boxed{\bf \: Length \: of \: minor \: axis = 2b}

\boxed{\bf \: Length \: of \: major \: axis = 2a}

\boxed{\bf \: Length \: of \: latus\: rectum =  \dfrac{ {2b}^{2} }{a} }

Similar questions