Math, asked by harshadabhole, 9 months ago

the length width height of the room are 7 ,8, 9 m respectively what is the total area of the wall​

Answers

Answered by Anonymous
14

Given :

  • Length of the room = 7 m.
  • Width of the room = 8 m.
  • Height of the room = 9 m.

To find :

  • Total area of the wall.

Solution :

  • Length = 7 m.
  • Width = 8 m.
  • Height = 9 m.

We know,

{\boxed{\green{\bold{Total\:area\: of\: the\:wall=2(Length+Width)\times\: Height}}}}

\implies\sf{Total\:area\:of\: the\:wall=2(7+8)\times\:9\:m^2}

\implies\sf{Total\:area\:of\: the\:wall=2\times\:15\times\:9\:m^2}

\implies\sf{Total\:area\:of\: the\:wall=270\:m^2}

Therefore the total area of the wall is 270 m².

_______________________

More Information :-

Cuboid

1. Total surface area of cuboid =

2(l×b + l×h + w×h)

2. Diagonal of cuboid =

\sqrt{l^2+w^2+h^2}

3. Volume of cuboid =

Length × Width × Height

[ where l = length ,w = width, h = Height]

Cube

1. TSA of cube = 6a²

2. Diagonal of cube = a√3

3. Volume of cube = a³

[ Where a = side ]

______________________

Answered by amitkumar44481
70

AnsWer :

270 m².

Given :

  • Length = 7m.
  • Width = 8m.
  • Height = 9m.

Solution :

We have,

 \tt The  \: total  \: area \:  of  \: Wall =2(l + b) \times h.

 \tt\longmapsto A_{Wall} = 2( 7 + 8 ) 9.

 \tt\longmapsto A_{Wall} = 2(15) 9.

 \tt\longmapsto A_{Wall} = 270 \:  {m}^{2} .

Therefore, the value of Wall be 270 m².

\rule{120}1

Some Formula :

Cube,

  • TSA => 6a²
  • CSA => 4a²
  • Volume => a³
  • Diagonal => √3a

Cuboid,

  • TSA => 2( lb + bh + hl )
  • CSA => 2( l + b )h
  • Volume => l* b * h
  • Diagonal² => l²+ h² + b²
Attachments:
Similar questions