Math, asked by harshitadhruw7639, 10 months ago

The lengths of the diagonals of a rhombus are 16 cm and 12 cm. The length of each side of a rhombus is (a) 8 cm (b) 9 cm (c) 10 cm (d) 12 cm

Answers

Answered by BrainlyConqueror0901
39

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Side\:of\:rhombus=10\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Diagonal( D_{1}) = 16 \: cm \\  \\ \tt: \implies Diagonal( D_{2}) = 12 \: cm \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Side \: of \: rhombus = ?

• According to given question :

 \tt \circ \: OA = 8 \: cm \\  \\  \tt \circ \: OB = 6 \: cm \\  \\  \bold{In \: right \: angled \:  \triangle \: AOB} \\  \tt:  \implies  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \:  \:  \:  \:  \:  \: (phythagoras \: theorem) \\  \\  \tt:  \implies  {AB}^{2}  =  {OA}^{2}  +  {OB}^{2}  \\  \\ \tt:  \implies  {AB}^{2}  =   {8}^{2}  +  {6}^{2}  \\  \\ \tt:  \implies  {AB}^{2}  =64 + 36 \\  \\ \tt:  \implies  {AB}^{2}  =100 \\  \\ \tt:  \implies  {AB}  = \sqrt{100}  \\  \\  \green{\tt:  \implies  {AB} =10 \: cm} \\  \\   \green{\tt \therefore Side \: of \: rhombus \: is \: 10 \: cm}

Attachments:

Anonymous: Amazing ❤️
Answered by saif188
35

Answer:

(c) 10 cm

Step-by-step explanation:

Length of the diagonals of the given rhombus are 16cm and 12cm

According to question:-

We will use Pythagoras theorem here.

(P)^2 + (B)^2 = (H)^2

(8)^2 + (6)^2 = (H)^2

64 + 36 = (H)^2

100 = (H)^2

√100 = H

10cm = H

Please.. please.. mark it as brainliest!!!

Cause' I only need 2 more brainliest for next rank Virtuoso

Similar questions