Math, asked by technologyknowledge1, 2 days ago

The lengths of the parallel sides of a trapezium are 5, 9 and its height is 7. Find its area.

Answers

Answered by StarFighter
9

Answer:

Appropriate Question :-

  • The length of the parallel sides of a trapezium are 5 m and 9 m and its height is 7 m. Find its area.

Given :-

  • The length of the parallel sides of a trapezium are 5 m and 9 m and its height is 7 m.

To Find :-

  • What is the area of a trapezium.

Formula :-

\clubsuit Area Of Trapezium Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height}}}\: \: \: \bigstar\\

Solution :

Given :

  • Length of parallel sides = 5 m and 9 m
  • Height = 7 m

According to the question by using the formula we get,

\implies \sf\bold{\blue{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (a + b) \times h}}\\

\footnotesize \implies \bf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (5 + 9) \times 7\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{1}{2} \times 14 \times 7\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{1}{2} \times 98\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{1 \times 98}{2}\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{\cancel{98}}{\cancel{2}}\\

\implies \sf Area_{(Trapezium)} =\: \dfrac{49}{1}\\

\implies \sf\bold{\red{Area_{(Trapezium)} =\: 49\: m^2}}\\

\sf\bold{\purple{\underline{\therefore\: The\: area\: of\: trapezium\: is\: 49\: m^2\: .}}}\\

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by pradhanmadhumita2021
12

\begin{gathered}\footnotesize\bigstar  \: \: \sf\boxed{\bold{\pink{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height}}}\: \: \: \bigstar\\\end{gathered} \\\begin{gathered}\footnotesize \: \sf\boxed{\bold{\blue{Solution :}}}\end{gathered}\\\begin{gathered}\footnotesize \: \sf\boxed{\bold{\orange{Given :}}} \end{gathered} \\\rm{ Length \:  of  \: parallel  \: sides = 5 \:  m \:  and  \: 9  \: m \: Height = 7  \: m} \\\rm{According  \: to \:  the \:  question \:  by \:  using \:  the \:  formula \:  we \:  get,} \\\begin{gathered} \pink{\implies \sf\bold{{Area_{(Trapezium)} = \dfrac{1}{2} \times (a + b) \times h}}}\end{gathered} \\ \begin{gathered}\footnotesize \implies \bf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height\end{gathered} \\\begin{gathered}\implies \sf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (5 + 9) \times 7\end{gathered}\\\begin{gathered}\implies \sf Area_{(Trapezium)} =\dfrac{1}{2} \times 14 \times 7\end{gathered}\\\begin{gathered}\implies \sf Area_{(Trapezium)} =\: \dfrac{1}{2} \times 98\end{gathered}\\\begin{gathered}\implies \sf Area_{(Trapezium)} =\: \dfrac{1 \times 98}{2}\end{gathered}\\\begin{gathered}\implies \sf Area_{(Trapezium)} = \dfrac{\cancel{98}}{\cancel{2}}\end{gathered} \\\begin{gathered}\implies \sf Area_{(Trapezium)} = \dfrac{49}{1}\end{gathered} \\\begin{gathered}\implies\sf\bold{{Area_{(Trapezium)} =\: 49\: m^2}}\end{gathered}\\\begin{gathered}\sf\bold{\red{\underline{\therefore\: The\: area\: of\: trapezium\: is\: 49\: m^2\: .}}}\end{gathered}

Similar questions