Math, asked by NandiniJanakiraman, 27 days ago


The lengths of the parallel sides.
of trapezium
ratio 3:5 and the distance between
them is 10cm. if the area of
trapezium is 120cm²
find the length of
parallel sides.
​​

Answers

Answered by itzsecretagent
6

Answer:

Length of parallel sides are in ratio 3:5.

Let the larger side =5x

⇒ Smaller side =3x

h=10 cm

 \sf \: Area  \: of \: trapezium= \frac{1}{2}  (Sum  \: of \:  parallel  \: sides)× (height) \\

 \sf \: area \:  of \:  trapezium =  \frac{1}{2}  \times (3x + 5x) \times 10

 \sf \implies 120=  \frac{1}{2}   \times 8x \times  10 \\

 \sf \implies \: 120 = 1 \times 8x \times  5

 \sf \implies \:   \cancel\frac{120}{5} =8x \\

 \sf \implies \: 24 = 8x

  \sf \implies \: x =   \cancel\frac{24}{8}  \\

 \sf \implies \: x = 3

Paralell sides = 9 and 15 cm

Answered by FiercePrince
14

Given that , The lengths of the parallel sides of trapezium are in ratio 3:5 and the distance between them is 10cm & the area of Trapezium is 120 cm² .

Exigency To Find : The Length of Parallel sides ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the Length of Parallel sides be 3x cm & 5x cm , respectively.

As , We know that ,

⠀⠀⠀⠀⠀▪︎Formula for Area of Trapezium :

\qquad \star \:\:\underline {\boxed {\pink{\pmb{\frak{  \:\:Area _{(\:Trapezium \:)}\: \:=\:\dfrac{1}{2} \:\times h \: \times \{ a + b \}\:  \:sq.\:units\:}}}}}\\\\

⠀⠀⠀⠀⠀Here , h is the Distance between parallel sides of Trapezium [ or Height ] , a & b are the two parallel sides of Trapezium & Area of Trapezium is 120 cm² .

\qquad \dashrightarrow \sf \:\:Area _{(\:Trapezium \:)}\: \:=\:\dfrac{1}{2} \:\times h \: \times \{ a + b \}\: \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf \:\:Area _{(\:Trapezium \:)}\: \:=\:\dfrac{1}{2} \:\times h \: \times \{ a + b \}\: \\\\

\qquad \dashrightarrow \sf \:\:120\: \:=\:\dfrac{1}{2} \:\times 10 \: \times \{ 5x + 3x \}\: \\\\

\qquad \dashrightarrow \sf \:\:120\:\times \:2  \:=\: 10 \: \times \{ 5x + 3x \}\: \\\\

\qquad \dashrightarrow \sf \:\:240  \:=\: 10 \: \times \{ 5x + 3x \}\: \\\\

\qquad \dashrightarrow \sf \:\:\dfrac{240}{10}  \:=\:  \{ 5x + 3x \}\: \\\\

\qquad \dashrightarrow \sf \:\:24  \:=\:  \{ 5x + 3x \}\: \\\\

\qquad \dashrightarrow \sf \:\:24  \:=\:  5x + 3x \: \\\\

\qquad \dashrightarrow \sf \:\:8x \:=\:  24\: \\\\

\qquad \dashrightarrow \sf \:\:x \:=\: \dfrac{ 24}{8}\: \\\\

\qquad \dashrightarrow \sf \:\:x \:=\:  3\: \\\\

\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{ \purple {  \:x \:=\:3 \:cm \:}}}}}\\

Therefore,

  • The Length of First parallel sides is 3x = 3(3) = 9 cm &
  • The Length of Second Parallel sides is 5x = 5(3) = 15 cm .

\qquad \therefore \:\underline {\sf Hence,  \:The \:Length  \:of \:Parallel \:sides \:of \:Trapezium \:are \:\pmb{\bf 9 \:cm \:\& \:15 \:cm \:}\:, respectively \:.\:}\\

Similar questions