Math, asked by chaitanyashetty2020, 9 months ago

The lengths of the side of a triangle are 5cm 12cm and 13cm. Find the length of perpendicular from the opposite vertex to the side whose length is 13cm. By herons formulae

Answers

Answered by Anonymous
31

 \large\bf\underline{Given:-}

  • Length of side's of triangle are 5cm , 12 cm and 13 cm.

 \large\bf\underline {To \: find:-}

  • length of perpendicular

 \huge\bf\underline{Solution:-}

Sides of triangle are :- 5cm , 12 cm ,and 13cm

 \begin{cases} \tt \: let \:  \bullet a = 5 \: cm \\\tt \:  \:  \bullet \: b = 12  \: cm \\\tt \:  \:  \bullet \: c = 13 \: cm\end{cases}

 \dag \:  \large  \bf \: s =  \frac{a + b + c}{2}

 \tt \rightarrowtail \: s =  \frac{5 + 12 + 13}{2}  \\  \\  \tt \rightarrowtail \: s =  \cancel \frac{30}{2}  \\  \\  \tt \rightarrowtail \: s = 15

✝️ Heron's Formula :-

 \bf area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)}

Area of triangle= √15(15-5)(15-12)(15-13)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀»» √ 15(10)×(3)×(2)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀»» √ 15 × 60

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀»» √ 900

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀»» 30 cm²

✝️Area of triangle = ½× base × height

  • let the perpendicular be p

»» 30 = ½ × 13 × p

»» 30 × 2 = 13p

»» 60 = 13p

»» p = 60/13

  • ≫ p = 4.6 cm

So,

length of the perpendicular is 4.6 cm.

Answered by Anonymous
19

Answer:

\sf{The \ length \ of \ perpendicular \ from}

\sf{opposite \ vertex \ to \ the \ side \ whose \ length}

\sf{is \ 13 \ cm \ is \ 4.61 \ cm}

Given:

  • The lengths of the side of a triangle are
  • 5 cm, 12 cm and 13 cm

To find:

  • The length of perpendicular from the opposite vertex to the side whose length is 13 cm

Solution:

\sf{By \ heron's \ formula}

\sf{s=\frac{a+b+c}{2}}

\sf{\therefore{s=\frac{5+12+13}{2}}}

\sf{\therefore{s=15}}

\sf{Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)}}

\sf{=\sqrt{15(15-5)(15-12)(15-13)}}

\sf{=\sqrt{15\times10\times3\times3}}

\sf{=\sqrt{30\times30}}

\sf{\therefore{Area \ of \ triangle=30 \ cm^{2}}}

\boxed{\sf{Area \ of \ triangle=\frac{1}{2}\times \ Breadth\times \ Height}}

\sf{\therefore{30=\frac{1}{2}\times13\times \ h}}

\sf{\therefore{h=\frac{30\times2}{13}}}

\sf{\therefore{h=4.61 \ cm(approx)}}

\sf\purple{\tt{\therefore{The \ length \ of \ perpendicular \ from}}}

\sf\purple{\tt{opposite \ vertex \ to \ the \ side \ whose \ length}}

\sf\purple{\tt{is \ 13 \ cm \ is \ 4.61 \ cm}}

Similar questions