Math, asked by awesome05, 11 months ago

the lengths of two sides of a right trianngle containing right angle are 5x cm and 3x-1 cm .If it's area is 60 cm^2, find it's perimeter

Answers

Answered by Anonymous
3

Solution :

Let the right triangle be ABC.

AB = 5x cm

BC = ( 3x - 1 ) cm

Given, Area of right triangle = 60  \mathsf{{cm} ^{2}}

Area of triangle =  \mathsf{\dfrac{1}{2}\:{\times{Base{\times{Height}}}}}

60 =  \mathsf{\dfrac{1}{2}\:{\times{( 5x ){\times{( 3x \:-: 1 )}}}}}

60 × 2 =  \mathsf{15{x} ^{2}\:-\:5x}

 \mathsf{15{x} ^{2}\:-\:5x\:-\:120\:=\:0}

Dividing by 5,

 \mathsf{3{x} ^{2}\:-\:x\:-\:24\:=\:0}

 \mathsf{3{x} ^{2}\:-\:9x\:+\:8x\:-\:24\:=\:0}

3x ( x - 3 ) + 8( x - 3 ) = 0

( 3x + 8) ( x - 3 ) = 0

x = 3, - 8/3

Since, the value of x = 3 is admissible as the second value is negative which will not be admissible.

Now,

AB = 5 ( 3) cm = 15 cm.

↪️ AB = 15 cm.

BC = ( 3×3 - 1 ) = 9 - 1 = 8 cm.

↪️ BC = 8 cm.

Now, Using PYTHAGORA'S theorem,

AC =  \sqrt{\mathsf{{AB} ^{2}\:+\:{BC}^{2}}}

AC =  \sqrt{\mathsf{{15} ^{2}\:+\:{8}^{2}}}

AC =  \sqrt{\mathsf{225\:+\:64}}

AC =  \sqrt{\mathsf{289}}

↪️ AC = 17 cm.

Now, Perimeter of right triangle ABC = AB + BC + AC

Perimeter = ( 15 + 8 + 17) cm.

Perimeter = 40 cm.

Attachments:

awesome05: why are we dividing it by 5
Anonymous: For simplification, otherwise the calculation may be difficult.
Similar questions