Math, asked by kameswar60, 1 month ago

The locus of the centroid of the triangle with vertices at (acos teeta, asin teeta), (bsin teeta, bcos teeta) and (1,0) is (Here is a parameter)

1) (3x - 1)^2 +9y^2 = a^2 + b^2
2) (3x + 1)^2 +9y^2 = a^2 + b^2
3) (3x + 1)^2 + 9y^2= a^2 + b^2
4) (3x - 1)^2 +9y^2= a^2 - b^2​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: let \:  \\ A = (x1,y1) = (a.cos \: θ,a \: sin \: θ) \\ B =(x2 , y2) = (b. sin \: θ	 ,   b.cos \:   	θ) \\ C = (x3,y3) = (1,0)

so \: by \: using \: centroid \: formula \\ we \: get \\ x =  \frac{x1 + x2 + x3}{3}  \:  \:  \:  \: y =  \frac{y1 + y2 + y3}{3}  \\  \\ ie \:  \: x =  \frac{a.cos \:θ + b.sin \:θ + 1 }{3}  \\  \\ 3x = a.cos \: θ + b.sin \: θ  +  1 \\ \\    \: a.cos \: θ + b.sin \: θ = 3x - 1 \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

similarly \: using \\  \\ y =  \frac{y1 + y2 + y3}{3}  \\  \\  =  \frac{a.sin \:θ + b.cos \:  θ + 0}{3}  \\  \\ ie \:  \: 3y = a.sin \: θ + b.cos \: θ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2) \\  \\

now \: squaring \: and \: adding \: both \: equations \\ we \: get \\ (3x - 1) {}^{2} + (3y)  {}^{2}  = (a.cos \: θ + b.sin \: θ) {}^{2}  + (a.sin \: θ + b.cos \: θ) {}^{2}  \\  \\ 9x {}^{2}  + 1 - 6x + 9y {}^{2}  = a {}^{2} .cos {}^{2}  \: θ + b {}^{2} .sin {}^{2}  \: θ + 2ab.sin \: θ.cos \: θ + a {}^{2} .sin {}^{2}  θ + b {}^{2} .cos {}^{2} θ + 2ab.sin \: θ.cos \: θ\\  \\ 9x {}^{2}  + 1 + 9y {}^{2}  - 6x = a {}^{2} .cos {}^{2}  \: θ + a {}^{2} .sin {}^{2} θ + b {}^{2} .sin {}^{2}  \: θ + b {}^{2} .cos  {}^{2}  \: θ + 4ab.sin \: θ.cos \: θ \\  \\  = a {}^{2}  \: (sin {}^{2} θ + cos { }^{2} θ) + b {}^{2} (sin {}^{2} θ + cos {}^{2} θ) + 4ab.sin \: θ.cos \: θ \\  \\  = a {}^{2} (1) + b {}^{2} (1) + 4ab.sin \: θ.cos \: θ

9x {}^{2}  + 9y {}^{2}  + 1 - 6x = a {}^{2}  + b {}^{2}  + 4ab.sin \: θ.cos \: θ \\ is \: required \: equation \: of \: locus \: of \: centroid

Similar questions