Math, asked by tnvrahmed5783, 1 year ago

The locus of the point w=re(z)+1/z, where |z|=3 in complex plane is circle,parabola,ellipse or hyperbola

Answers

Answered by Anonymous
13

Answer:

please refer the attachment

Attachments:
Answered by sumitgraveiens
5

Step-by-step explanation:   W = re(Z) + 1/Z        and |Z| =3  where Z= x+iy

             W= x+1/x+iy     ,now rationalizing

             W=  x+  \frac{x-iy}{x^{2}+y^{2}  }                                                        (\frac{1}{x+iy}  x\frac{x-iy}{x-iy}  = \frac{x-iy}{x^{2} +y^{2} } )

but x²+y² = 9         because |z| =3 ⇒ √x²+y² =3 ⇒x²+y² = 9

          w = x+ \frac{x-iy}{9}

              = 10x-iy/9

             = \frac{10x}{9} +(\frac{-iy}{9} ) correct answer is above instead of given answer

Similar questions