The logical sum of the all minterms in boolean function of n variablees
Answers
Answered by
0
Answer:
1
Explanation:
Here is your answer
Variables a,b,c
To Prove: The logical sum of the all minterms in boolean function of n variable is 1.
Proof:
Here n=3
S= abc+ab'c'+ab'c+ab'c'+a'b'c'+a'b'c+a'bc'+a'bc
=ab(c+c')+ab'+(c+c')+a'b(c+c')+a'b'(c+c')
We know that,
(c+c')=1
=> ab(1)+ab'(1)+a'b(1)+a'b'(1)
=> ab+ab'+a'b+a'b'
=a(b+b')+a'(b+b')
Again, (b+b')=1
=>a(1)+a'(1)
=a+a'
=1
Hence proved..
Similar questions