Math, asked by meetpatel3939, 3 months ago

the longest side of the triangle when the ratio of 3:4:5. if it's perimeter is 36, what is is area

Answers

Answered by priyasamanta501
1

Answer \:

Formula :

Perimeter of the triangle = a + b + c

Solution :

Let the sides of the triangle are 3x,4x and 5x.

A/C: 3x+4x+5x=36

➠ 12x = 36

➠ x = 36/12

➠ x = 3

Thus, 3x = 9cm, 4x = 12cm and 5x = 15cm

Area :

1/2 × base × height

➠ \frac{1}{2}  \times 9 \times 12 \\ ➠1 \times 6 \times 9 \\ ➠54 {cm}^{2}

Therefore, The area of the triangle is 54cm².


AkelaRavan000: hey meri Is delete ho gyi ye nyi id hai Inbox lr dena...
Answered by Anonymous
10

Given:-

  • The longest side of the triangle in the ratio of 3:4:5.
  • Perimeter of the triangle is 36 cm.

To find:-

  • Area of the triangle.

Solution:-

Let,

  • the ratio be x.

\tt:\implies\: \: \: \: \: \: \: \: {AB + BC + CA = 36}

\tt:\implies\: \: \: \: \: \: \: \: {3x + 4x + 5x = 36}

\tt:\implies\: \: \: \: \: \: \: \: {12x = 36}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{36}{12}}

\tt:\implies\: \: \: \: \: \: \: \: {x = 3}

  • Putting the value of x.

\tt:\implies\: \: \: \: \: \: \: \: {AB = 3x = 9\: cm}

\tt:\implies\: \: \: \: \: \: \: \: {BC = 4x = 12\: cm}

\tt:\implies\: \: \: \: \: \: \: \: {AC = 5x = 15\: cm}

{\dag}\:{\underline{\boxed{\sf{\purple{Using\: Pythagoras\: theorem}}}}}

\tt:\implies\: \: \: \: \: \: \: \: {AC^2 = AB^2 + BC^2}

\tt:\implies\: \: \: \: \: \: \: \: {(9)^2 + (12)^2}

\tt:\implies\: \: \: \: \: \: \: \: {81 + 144}

\tt:\implies\: \: \: \: \: \: \: \: {AC^2 = 225}

\tt:\implies\: \: \: \: \: \: \: \: {AC = 15\: cm}

  • ∠B is right angle in ΔABC.

\tt:\implies\: \: \: \: \: \: \: \: {\triangle ABC = \dfrac{1}{2} AB \times BC}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{1}{2} 9 \times 12}

\tt:\implies\: \: \: \: \: \: \: \: {\underline{\boxed{\pink{54\: cm^2}}}}

Hence,

  • the area of the triangle is 54 cm².

Anonymous: Very nice (☆▽☆)
Anonymous: Thanks :)
Anonymous: Superb ❤️
Anonymous: Thanks
Similar questions