The magnitude of change in velocity of a particle
having speed v is v during a time interval ∆t while
moving in a uniform circular motion. The magnitude
of average force on the particle is proportional to
(1)v/(2∆t)
(2)v/∆t
(3)(Πv)/(3∆t)
(4)(Πv)/(2∆t)
Answers
Answered by
3
Explanation:
Here is your solution
Let the radius of the circle be
Let the radius of the circle be R
Let the radius of the circle be R
Since the particle hasn't changed its velocity,
Since the particle hasn't changed its velocity, v
Since the particle hasn't changed its velocity, v1
Since the particle hasn't changed its velocity, v1=
Since the particle hasn't changed its velocity, v1=v
Since the particle hasn't changed its velocity, v1=v2
Since the particle hasn't changed its velocity, v1=v2
Since the particle hasn't changed its velocity, v1=v2 Solving the above expression we ges,
s,average Velocity
Similar questions