Physics, asked by anzilj7, 8 months ago

The magnitudes of two forces X and Y are in the ratio
2: 3. If the resultant of two forces is 25 N and angle
between them is 60°, find the magnitude of each force,
close to one place of decimal.​

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x=18.2\:N}}}

\green{\tt{\therefore{y=12.1\:N}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Ratio \: of \: two \: forces = 2 : 3 \\  \\ \tt:  \implies Resultant \: force(R) = 25 \: n \\   \\  \tt:  \implies Angle \: between \: vectors = 60 \degree \\ \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Magnitude \: of \: two \: forces =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{ x}{y}  =  \frac{2}{3} \\  \\   \tt:  \implies  x =  \frac{2y }{3} -  -  -  -  - (1) \\  \\ \bold{As \: we \: know \:that} \\  \tt:  \implies R =  \sqrt{ {a}^{2}  +  {b}^{2} + 2ab \: cos  \theta }  \\   \\  \tt: \implies 25 =  \sqrt{ {x}^{2} +  {y}^{2}  + 2x  \times \times  y \: cos \: 60 \degree}   \\ \\ \tt:  \implies 25 =  \sqrt{ (\frac{2y}{3})^{2}  +  {y}^{2}  +  2 \times \frac{2y}{3} \times y \times cos \: 60 \degree }  \\  \\ \tt:  \implies  {25}^{2}  =  \frac{4 {y}^{2} }{9}  +  {y}^{2}  +  \frac{4 {y}^{2} }{3}  \times  \frac{1}{2}  \\  \\ \tt:  \implies 625 =  \frac{4 {y}^{2} + 9 {y}^{2}  +  6{y}^{2}  }{9}  \\  \\ \tt:  \implies 625 \times 9 = 17 {y}^{2}  \\  \\ \tt:  \implies  \frac{625 \times 9}{17}  =  {y}^{2}  \\  \\ \tt:  \implies  {y}^{2}  = 330.9   \\  \\ \tt:  \implies y =  \sqrt{330.9}  \\  \\  \green{\tt:  \implies y = 18.2 \: N} \\  \\ \text{Putting \: value \: of \: y \: in \: (1)}   \\ \tt:  \implies  x =  \frac{2 \times 18.2}{3}  \\  \\  \green{\tt:  \implies x = 12.1 \: N}

Similar questions