the major milestones in mathematics from euclid to euler
Answers
Step-by-step explanation:
The Euclid–Euler theorem is a theorem in mathematics that relates perfect numbers to Mersenne primes. It states that every even perfect number has the form 2n − 1(2n − 1), where 2n − 1 is a prime number. The prime numbers of the form 2n − 1 are known as Mersenne primes, and require n itself to be prime.
It has been conjectured that there are infinitely many Mersenne primes. Although the truth of this conjecture remains unknown, it is equivalent, by the Euclid–Euler theorem, to the conjecture that there are infinitely many even perfect numbers. However it is also unknown whether there exists even a single odd perfect number.[1]
Answer:
The Euclid–Euler theorem is a theorem in mathematics that relates perfect numbers to Mersenne primes. It states that every even perfect number has the form 2n − 1(2n − 1), where 2n − 1 is a prime number. The prime numbers of the form 2n − 1 are known as Mersenne primes, and require n itself to be prime.