Physics, asked by iamlall466, 10 months ago

The mass of the earth is 6×10²⁴ kg and that of the moon is 7.4×10²² kg.if the distance between the earth and the moon be 3.84×10⁵ km, calculate the force exerted by the earth on the moon.

Answers

Answered by seabird1234
16

Hope u like it ✌❤

Have a great day

Stay safe

Attachments:
Answered by Anonymous
11

\huge\star\sf\underline\pink{Solution :-}

 \\

\sf\underline\red{Newton's \: Formula\:to\: exert\:Force,} \\ \\ {\boxed{\sf{ F = G \times \dfrac{m_{1} \times m_{2}}{r^2} }}} \\ \\ \sf{Gravitational\: constant (G) = 6.7 \times 10^{-11} \:Nm^2 kg^{-2} } \\ \\ \sf{ we\:have,} \\ \\ \sf{Mass\:of\: Earth (m_{1}) = 6 \times 10^{24} kg} \\ \\ \sf{Mass\:of\: Moon (m_{2}) = 7.4 \times 10^{22} kg} \\ \\ {\boxed{\sf{ Distance\: between\:earth\:and\:moon(r) = 3.84 \times 10^5 km}}} \\ \\ \implies\sf{3.84 \times 10^5 \times 100\: m} \\ \\ \implies\sf{ 3.84 \times 10^8 \:m} \\ \\ \sf\red{Using\: Formula\:we\:get, } \\ \\ {\sf{ F = \dfrac{6.7 \times 10^{-11} \times 6 \times 10^{24} \times 7.4 \times 10^{22}}{(3.84 \times 10^8)^2} }} \\ \\ \implies\sf{F = 2.01 \times 10^{20}\: Newton(N)}

Similar questions