Physics, asked by Anonymous, 7 months ago

The mass of the earth is 6X10²4 kg
and that of the moon is 7. 4x10 22 ke
If the distance between the earth
the moon is 3.84 x 105 kg Calculate
the force exerted by the earth
moon (Take G = 67101 Nm 2 Kg - 2)
and
on the​

Answers

Answered by Anonymous
2

Explanation:

F=

R

2

GM

e

M

m

F=

(3.84×10

8

)

2

6.7×10

−11

×6×10

24

×7.4×10

22

=

(3.84)

2

×10

16

297.48×10

−11+24+22

=20.17×10

19

=2.017×10

20

N

Answered by Anonymous
10

\;\;\underline{\textbf{\textsf{ Given:-}}}

\sf Mass \ of \ earth(M_1) = 6\times 10^{24}kg\\

\sf Mass \ of \ moon (M_2)=7.4\times 10^{22}kg\\

\sf Distance \ between\ them (R) = 3.84\times 10^5km \ \\

\sf \ or \ R= 3.84\times 10^{8} m\\

\sf Gravitional \ constant (G) = 6.7\times 10^{-11}Nm^2/kg^2

\;\;\underline{\textbf{\textsf{ To Find   :-}}}

• Force exerted by Earth on Moon

\;\;\underline{\textbf{\textsf{Solution :-}}}

\underline{\:\textsf{ As we know that :}}

{\boxed{\sf F= G\times  \dfrac{M_1\times M_2}{R^2}}}

\underline{\:\textsf{Putting the values  :}}

\dashrightarrow  \sf F= \dfrac{6.7\times 10^{-11}\times 6\times 10^{24}\times 7.4\times 10^{22}}{(3.84\times 10^8)^2}\\ \\ \\\dashrightarrow \sf F= \dfrac{6.7\times 6\times 7.4\times 10^{(-11+24+22)}}{14.7\times 10^{16}}\\ \\ \\\dashrightarrow \sf F= \dfrac{297.48\times 10^{45}}{14.7\times 10^{16}}\\ \\ \\ \dashrightarrow \sf F= \dfrac{297.48\times 10^{45}\times 10^{-16}}{14.7}\\ \\  \\ \\ \dashrightarrow \sf F= 20.23\times 10^{19}\\ \\ \\ \dashrightarrow \sf F= 2.02\times 10^{20}N

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{  Force exerted by Earth on Moon is </p><p>\textbf{2.02 ×10²⁰ N}}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions