Math, asked by meghaprasadr, 3 months ago

The matrix A=[-2 2 -3 2 1 -6 -1 -2 0] has an eigen value 5 with corresponding eigen vector X=[1 2 -1].Find A^5X.

Answers

Answered by AkelaRavan000
0

Step-by-step explanation:

Can a matrix have infinite eigenvectors

Answered by priyarksynergy
1

Given:

A=\left[\begin{array}{ccc}-2&2&-3\\2&1&-6\\-1&-2&0\end{array}\right]

X=\left[\begin{array}{ccc}1&2&-1\end{array}\right]

To find: A^{5} X

Step-by-step explanation:

Step 1 of 2

A^{5} =\left[\begin{array}{ccc}-2&2&-3\\2&1&-6\\-1&-2&0\end{array}\right]^{5}\\A^{5} =\left[\begin{array}{ccc}178&842&-1263\\842&1441&-2526\\-421&-842&1020\end{array}\right]

Step 2 of 2

A^{5} X=\left[\begin{array}{ccc}178&842&-1263\\842&1441&-2526\\-421&-842&1020\end{array}\right]\left[\begin{array}{ccc}1&2&-1\end{array}\right]\\A^{5} X=\left[\begin{array}{ccc}2283&4566&7335\end{array}\right]\\

Therefore, A^{5} X=\left[\begin{array}{ccc}2283&4566&7335\end{array}\right]\\

Similar questions