Physics, asked by anujbhala1236, 11 months ago

The maximum velocity of a particle executing simple
harmonic motion is 100 cm s- and the maximum
acceleration is 157 cm s. Determine the periodic-
time.
Ans. 4 s.​

Answers

Answered by Anonymous
1

Hello dear if you have any diffuculty about my answer then pls comment below..

Pls, mark me as brainliest...

Attachments:
Answered by ShivamKashyap08
12

Answer:

  • Time Period (T) is 4 Seconds.

Given:

  1. Maximum velocity = 100 cm/s
  2. Maximum Acceleration = 157 cm/s.

Explanation:

\rule{300}{1.5}

From Maximum velocity Formula

\large\bigstar \: {\boxed{\tt v_{max} = \omega A}}

\bold{Here}\begin{cases}\text{A Denotes Amplitude} \\ \omega \text{ Denotes Angular Frequency}\end{cases}

Now,

\large{\boxed{\tt v_{max} = \omega A}}

Substituting the values,

\longmapsto \large{\tt 100 = \omega A}

\longmapsto \large{\tt 100 = \omega A \: ----(1)}

From Maximum Acceleration Formula.

\large\bigstar \: {\boxed{\tt a_{max} = \omega^2 A}}

\bold{Here}\begin{cases}\text{A Denotes Amplitude} \\ \omega \text{ Denotes Angular Frequency}\end{cases}

Now,

\large{\boxed{\tt a_{max} = \omega^2 A}}

Substituting the values,

\longmapsto \large{\tt 157 = \omega^2 A}

\longmapsto \large{\tt 157 = \omega^2 A \: ----(2)}

\rule{300}{1.5}

\rule{300}{1.5}

Dividing Equation (2) by (1) I.e. [Equation-2/Equation-1]

\longmapsto \large{\tt \dfrac{157}{100} = \dfrac{\omega^2 A}{\omega A}}

\longmapsto \large{\tt \dfrac{157}{100} = \cancel{\dfrac{\omega^2 A}{\omega A}}}

\longmapsto \large{\tt \dfrac{157}{100} = \omega}

\longmapsto \large{\tt \omega = \dfrac{157}{100}}

\longmapsto\large{\underline{\boxed{\tt \omega = 1.57 \: rad/sec}}}

\rule{300}{1.5}

\rule{300}{1.5}

From the Formula we Know,

\large\bigstar \: {\boxed{\tt \omega = \dfrac{2 \pi}{T}}}

\bold{Here}\begin{cases}\text{T Denotes Time Period} \\ \omega \text{ Denotes Angular Frequency}\end{cases}

Now,

\large{\boxed{\tt \omega = \dfrac{2 \pi}{T}}}

Substituting the values,

\longmapsto\large{\tt 1.57 = \dfrac{2 \times 3.14}{T}}

\longmapsto\large{\tt 1.57 \times T= 2 \times 3.14}

\longmapsto\large{\tt T = \dfrac{2 \times 3.14}{1.57}}

\longmapsto\large{\tt T = \cancel{\dfrac{2 \times 3.14}{1.57}}}

\longmapsto\large{\tt T = 2 \times 2}

\longmapsto\large{\underline{\boxed{\red{\tt T = 4 \: Second}}}}

Periodic Time Period (T) is 4 Seconds.

\rule{300}{1.5}

Similar questions