Math, asked by bhageerath5615, 11 months ago

The maximum volume (in cu.m) of the right circular cone having slant height 3 m is (A) 6π (B) 3√3 π
(C) (4/3)π
(D) 2√3 π
[JEE Main 2019]

Answers

Answered by MaheswariS
0

\text{Let r, h and l be radius, height and slant height of the cone respecively}

\text{Then,}\;l^2=r^2+h^2

\implies\,9=r^2+h^2

\implies\,r^2=9-h^2

\text{Volume of the cone}

V=\frac{1}{3}\pi\,r^2\,h

V=\frac{\pi}{3}(9-h^2)h

V(h)=\frac{\pi}{3}(9h-h^3)

V'(h)=\frac{\pi}{3}(9-3h^2)

V''(h)=\frac{\pi}{3}(-6h)

\text{For maximum,}\;V'(h)=0

\frac{\pi}{3}(9-3h^2)=0

\implies\,9=3h^2

\implies\,h^2=3

\implies\,h=\pm\sqrt{3}

\text{But h cannot be negative}

\text{when h=$\sqrt{3}$,}

V''(h)=\frac{\pi}{3}(-6\sqrt{3})<0

\therefore\text{V attains maximum at $h=\sqrt{3}$}

\text{Maximum volume of cone}

=V(\sqrt{3})

=\frac{\pi}{3}(9\sqrt{3}-3\sqrt{3})

=\frac{\pi}{3}(6\sqrt{3})

=\pi(2\sqrt{3})

=\bf\,2\sqrt{3}\,\pi\;\text{Cubic meter}

\therefore\textbf{Option (D) is correct}

Similar questions