Math, asked by ravillavallamma, 2 months ago

The mean and variance of binomial variate are 8 and 6. Find
the probability distribution function.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

  • Mean of Binomial Distribution = 8

  • Variance of Binomial Distribution = 6

Let assume that

  • n be number of independent trials.

  • p be probability of success

  • q be probability of failure

We know,

In Binomial Distribution,

\red{\rm :\longmapsto\:Mean = np}

\rm :\implies\:np = 8 -  -  - (1)

And

 \purple{\rm :\longmapsto\:Variance = npq}

\rm :\implies\:npq = 6

\rm :\implies\:8q = 6 \:  \:  \:  \:  \:  \:  \:  \:  \{using \: (1) \:  \}

\bf\implies \:q = \dfrac{3}{4}

We know,

 \green{\bf :\longmapsto\:p + q = 1}

\rm :\longmapsto\:p + \dfrac{3}{4}  = 1

\rm :\longmapsto\:p  = 1 -  \dfrac{3}{4}

\rm :\longmapsto\:p  =  \dfrac{4 - 3}{4}

\bf :\longmapsto\:p  =  \dfrac{1}{4}

On substituting the value of p, in equation (1), we get

\rm :\longmapsto\:n \times \dfrac{1}{4}  = 8

\bf\implies \:n = 32

Thus,

We have now,

\rm :\longmapsto\:n = 32

\rm :\longmapsto\:p = \dfrac{1}{4}

\rm :\longmapsto\:q = \dfrac{3}{4}

Let 'r' be a random variable associated with the Binomial Distribution,

So,

Binomial Distribution is given by

\bf :\longmapsto\:P(r) =  \: ^nC_r \:  {p}^{r} \:  {q}^{n - r}

On substituting the values of n, p and q, we get

\rm :\longmapsto\:P(r) \:  =  \: ^nC_r \: { \bigg(\dfrac{1}{4}  \bigg)}^{r} { \bigg(\dfrac{3}{4}  \bigg)}^{32 - r}  \:  \: where \: 0 \leqslant r \leqslant 32

Similar questions