Math, asked by mauryajayesh9, 21 days ago

The mean of 10 observations is 20 and standard deviation is 15. If 5 is added to each observation, the new mean is ______ and standard deviation is ________​

Answers

Answered by Raghavak01
0

Answer:

Step-by-step explanation:

Given:
The circumference of the base of cylinder is 30.8cm.
Its curved surface area is 289.52 cm ²


To Find:
Height of cylinder

Solution:

Using formula:
 \red{ \underline {\boxed{ \rm {\pmb {Circumference \:  of \:  cylinder {=  2πr }}}}}}  \: \star
   \red{\underline { \boxed{ \rm { \pmb{CSA  \: of  \: cylinder = 2πrh }}}}}  \: \star



Circumference of cylinder = 30.8 cm
 \sf \mapsto2πr = 30.8 cm
\sf \mapsto2 ×  \dfrac{22}{7}  × r =  \dfrac{308}{10}  

 \sf \mapsto \: 44 \times 10 \times r = 308 \times 7
  \sf \mapsto440 \times r = 2156
 \sf \mapsto r =  \dfrac{2156}{440}
 \pmb{ \boxed{ \sf{ \mapsto  {r = 4.9cm}}}}  \:  \pink  \star




Now,
CSA of cylinder= 2πrh

 \sf \mapsto289.52 = 2 \times  \dfrac{22}{7}  \times  \times 4.9 \times h
 \sf \mapsto \dfrac{28952}{100}  = 2 \times  \dfrac{22}{7}  \times  \dfrac{49}{10}  \times h
  \sf \mapsto   \dfrac{28952}{100}   = \dfrac{44 \times 49}{7 \times 10}  \times h

 \sf \mapsto \dfrac{28952}{100}  =  \dfrac{2156}{70}  \times h
 \sf \mapsto h =  \dfrac{28952 \times 70}{2156 \times 100}
 \sf \mapsto \dfrac{ \cancel{2026640}}{  \cancel{215600}}
 \boxed{ \pmb{ \sf \mapsto h  = 9.4cm}}  \:  \pink\star



Hence,
Height of cylinder is 9.4cmAnswer:



Step-by-step explanation:

Given:
The circumference of the base of cylinder is 30.8cm.
Its curved surface area is 289.52 cm ²


To Find:
Height of cylinder

Solution:

Using formula:
 \red{ \underline {\boxed{ \rm {\pmb {Circumference \:  of \:  cylinder {=  2πr }}}}}}  \: \star
   \red{\underline { \boxed{ \rm { \pmb{CSA  \: of  \: cylinder = 2πrh }}}}}  \: \star



Circumference of cylinder = 30.8 cm
 \sf \mapsto2πr = 30.8 cm
\sf \mapsto2 ×  \dfrac{22}{7}  × r =  \dfrac{308}{10}  

 \sf \mapsto \: 44 \times 10 \times r = 308 \times 7
  \sf \mapsto440 \times r = 2156
 \sf \mapsto r =  \dfrac{2156}{440}
 \pmb{ \boxed{ \sf{ \mapsto  {r = 4.9cm}}}}  \:  \pink  \star




Now,
CSA of cylinder= 2πrh

 \sf \mapsto289.52 = 2 \times  \dfrac{22}{7}  \times  \times 4.9 \times h
 \sf \mapsto \dfrac{28952}{100}  = 2 \times  \dfrac{22}{7}  \times  \dfrac{49}{10}  \times h
  \sf \mapsto   \dfrac{28952}{100}   = \dfrac{44 \times 49}{7 \times 10}  \times h

 \sf \mapsto \dfrac{28952}{100}  =  \dfrac{2156}{70}  \times h
 \sf \mapsto h =  \dfrac{28952 \times 70}{2156 \times 100}
 \sf \mapsto \dfrac{ \cancel{2026640}}{  \cancel{215600}}
 \boxed{ \pmb{ \sf \mapsto h  = 9.4cm}}  \:  \pink\star

Similar questions