The mean of 5 observation is 4.8 and the variance is 6.56.If three of the five observations are 1,3,8 find the other two observations.
Answers
Given:
The mean of 5 observation is 4.8 and the variance is 6.56. The three of the five observations are 1,3,8.
To find:
The other two observations.
Solution:
Mean = 4.8
N = 5
Mean = ∑ x / N = 1 + 3 + 8 + x + y / 5
4.8 = 1 + 3 + 8 + x + y / 5
4.8 × 5 = 1 + 3 + 8 + x + y
24 = 12 + x + y
12 = x + y .........(1)
Variance = 6.56
1/5 ∑(xi - 4.8)² = 6.56
∑(xi - 4.8)² = 6.56 × 5
(1 - 4.8)² + (3 - 4.8)² + (8 - 4.8)² + (x - 4.8)² + (y - 4.8)² = 32.8
14.44 + 3.24 + 10.24 + x² + 23.04 - 9.6x + y² + 23.04 - 9.6y = 32.8
74 + x² + y² - 9.6 (x + y) = 32.8
From (1), we get,
74 + x² + y² - 9.6 (12) = 32.8
74 + x² + y² - 115.2 = 32.8
x² + y² = 74 ........(2)
Using (1), we have,
(x + y)² = 12²
x² + y² + 2xy = 144
74 + 2xy = 144
xy = (144 - 74) / 2
xy = 35
x = 35/y ..........(3)
Again using (1), we have,
x + y = 12
35/y + y = 12
35 + y² = 12y
y² - 12y + 35 = 0
solving the above quadratic equation, we get,
(y - 7) (y - 5) = 0
y = 5, 7
From (3), we get,
x = 35/y
when, y = 5, x = 35/5 ⇒ x = 7
when, y = 7, x = 35/7 ⇒ x = 5
Therefore, the remaining two observations are 5 and 7.