The mean of the following frequency distribution is 145. Find x and y if the sum of the following frequency distribution is 200. CLASS FREQUENCY 0 - 50 6 50 - 100 x 100 - 150 64 150 - 200 52 200 - 250 y 250 - 300 14 Total 200
Answers
Answered by
3
Solution :-
_____________________________________________________________
Class Frequency (f) Mid Values (x) fx
_____________________________________________________________
0 - 50 6 25 150
50 - 100 x 75 75x
100 - 150 64 125 8000
150 - 200 52 175 9100
200 - 250 y 225 225y
250 - 300 14 275 3850
_____________________________________________________________
136 + x + y 21100 + 75x + 225y
_____________________________________________________________
Given : Mean = 145 and N = 200
Hence, 136 + x + y = 200
⇒ x + y = 200 - 136
⇒ x + y = 200 - 136
⇒ x + y = 64 ...........(1)
Mean = Σfx/N
⇒ 145 = (21100 + 75x + 225y)/200
⇒ 29000 = 21100 + 75x + 225y
⇒ 75x + 225y = 29000 - 21100
⇒ 75x + 225y = 7900
Dividing the above equation by 25, we get.
⇒ 3x + 9y = 316 ............(2)
Multiplying the equation (1) by 3
⇒ (x + y = 64)*3
= 3x + 3y = 192 ................(3)
Now, subtracting (3) from (2)
3x + 9y = 316
3x + 3y = 192
- - -
_____________
6y = 124
_____________
⇒ 6y = 124
⇒ y = 124/6
⇒ y = 20.66667 or 21 (approx)
Substituting the value of y in (1)
⇒ x + y = 64
⇒ x + 21 = 64
⇒ x = 64 - 21
⇒ x = 43
So, value of x is 43 and value of y is 21.
Answer.
_____________________________________________________________
Class Frequency (f) Mid Values (x) fx
_____________________________________________________________
0 - 50 6 25 150
50 - 100 x 75 75x
100 - 150 64 125 8000
150 - 200 52 175 9100
200 - 250 y 225 225y
250 - 300 14 275 3850
_____________________________________________________________
136 + x + y 21100 + 75x + 225y
_____________________________________________________________
Given : Mean = 145 and N = 200
Hence, 136 + x + y = 200
⇒ x + y = 200 - 136
⇒ x + y = 200 - 136
⇒ x + y = 64 ...........(1)
Mean = Σfx/N
⇒ 145 = (21100 + 75x + 225y)/200
⇒ 29000 = 21100 + 75x + 225y
⇒ 75x + 225y = 29000 - 21100
⇒ 75x + 225y = 7900
Dividing the above equation by 25, we get.
⇒ 3x + 9y = 316 ............(2)
Multiplying the equation (1) by 3
⇒ (x + y = 64)*3
= 3x + 3y = 192 ................(3)
Now, subtracting (3) from (2)
3x + 9y = 316
3x + 3y = 192
- - -
_____________
6y = 124
_____________
⇒ 6y = 124
⇒ y = 124/6
⇒ y = 20.66667 or 21 (approx)
Substituting the value of y in (1)
⇒ x + y = 64
⇒ x + 21 = 64
⇒ x = 64 - 21
⇒ x = 43
So, value of x is 43 and value of y is 21.
Answer.
Similar questions