Math, asked by rishi123470, 11 months ago

The mean of the following frequency distribution is 28 and the sum of the observations is 100.
Find fi and f.
Marks 0-10 10-20 20-30 30-40 40-50 50-60
No. of Students 12 18 fz 20 | fz 6

Answers

Answered by Alcaa
33

Answer:

f_1 = 31.5

f_2 = 14.5

Step-by-step explanation:

We are given the mean of the following frequency distribution;

   Marks             No. of Students (f)           X               X*f

   0 - 10                         12                             5               60

   10 - 20                        18                            15              270

   20 - 30                        f_1                            25             25f_1

   30 - 40                       20                           35              700

   40 - 50                        f_2                            45              45f_2

   50 - 60                        6                             55            330  

                           ∑f = 56+f_1+f_2                          ∑X*f = 1360+25f_1+45f_2  

We are given that Total no. of students is 100.

So,   56+f_1+f_2 = 100

           f_1+f_2 = 100 - 56 = 46

               f_2 = 46 - f_1 ----------- [Equation 1]

Mean is given by = \frac{\sum Xf}{\sum f}

                   28   =   \frac{1360+25f_1+45f_2}{100}

               28 * 100 = 1360+25f_1+45f_2

                25f_1+45f_2 = 1440

                 5f_1+9f_2 = 288  

Putting value of f_2 from equation 1 into above equation;

                  5f_1+9(46-f_1) = 288

                  5f_1+414-9f_1 = 288

                      4f_1 = 414-288

                        f_1 = 126/4 = 31.5

Putting this in equation 1 we get, f_2 = 46 - 31.5 = 14.5 .

Answered by ashthepokemonmaster0
10

Step-by-step explanation:

Y=17

X= 27

PROOF: 56+X+Y=100

56+17+27=100

56+44=100

100=100

Attachments:
Similar questions