Math, asked by mackenziedcosta123, 5 months ago

the measure of the 4 angles of a Quadrilateral5x, 6x, 4x and 3x. find the value of x​

Answers

Answered by akshhh88
0

Answer:

We know that the sum of all angles in a quadrilateral is 360°

Given angles→ 5x, 6x, 4x, 3x

                                                                                                 

Now, the sum of these four angles MUST be equal to 360,

i.e. →

5x+6x+4x+3x=360\\18x=360\\x=20

Therefore, the angles of the quadrilateral are→

5x=5×20=100°

6x=6×20=120°

4x=4×20=80°

3x=3×20=60°

Answered by MrHyper
12

\Huge{\textbf{\textsf{{\color{navy}{an}}{\purple{sw}}{\pink{er}}{\color{pink}{:}}}}}

 \sf \large \red{ \underline{To \: find}  \: : }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf \red{The \: value \: of \: x \: when \:  \: 5x \: , \: 6x \: , \: 4x \: and \: 3x} \\  \sf \red{are \: the \: four \: angles \: of \: a \: quadrilateral} \:   \\  \\  \sf \red{We \: know \: that \: in \: a \: quadrilateral ,\: the} \:  \:  \:  \:  \\  \sf \red{sum \: of \: all \: the \: angles \: are \: 360 \degree}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \bf \implies \red{5x + 6x + 4x + 3x = 360 \degree} \\  \bf \implies \red{18x = 360}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\   \bf \implies \red{x =  \frac{360}{18} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \\  \bf \implies \red{x = \underline{ \boxed{ \bf 20}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions