Math, asked by sufiyan6296, 2 days ago

The measures of angles of a triangle are (x - 5)°, (x + 15)° and (2x - 30)°. Find all the angles.​

Answers

Answered by MissDusk
49

Given: The measure of angles of triangle are (x - 5)°, (x + 15)° and (2x - 30)°.

Need to Find: Angles of triangle?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

\underline{\dagger\; \frak{As\; we\; know\; that\; :}}

  • ASP (Angle Sum ProPerty) of the triangle States that sum of all angles of a triangle is 180°.

\\:\implies\quad\sf{(x-5)+(x+15)+(2x-30)={180}^{\circ}}\\

\\:\implies\quad\sf{x-5+x+15+2x-30={180}^{\circ}}\\

\\:\implies\quad\sf{4x-{20}^{\circ}={180}^{\circ}}\\

\\:\implies\quad\sf{4x={180}^{\circ}+{20}^{\circ}}\\

\\:\implies\quad\sf{4x={200}^{\circ}}\\

\\:\implies\quad\sf{x=\cancel{\dfrac{{200}^{\circ}}{4}}}\\

\\:\implies\quad\pmb{\sf{x={50}^{\circ}}}\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

Therefore,

  • x - 5 = 50 - 5 = 45
  • x + 15 = 50 + 15 = 65
  • 2x - 30 = 2(50)-30 = 70

\\\underline{\therefore\sf{Hence,\: the\: angles\: of\: \triangle\: are}\: \bold{{45}^{\circ}\: {65}^{\circ}}\: \sf{and}\: \bold{{70}^{\circ}\sf{respectively.}}}

Similar questions